Skip to Content
Merck
All Photos(1)

Documents

411736

Sigma-Aldrich

1,6-Hexanediol dimethacrylate

contains 75.0-125.0 hydroquinone as inhibitor

Synonym(s):

1,6-Hexamethylene dimethacrylate, 1,6-Hexanediyl dimethacrylate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
[H2C=C(CH3)CO2(CH2)3-]2
CAS Number:
Molecular Weight:
254.32
Beilstein:
1957290
EC Number:
MDL number:
UNSPSC Code:
12162002
PubChem Substance ID:
NACRES:
NA.23

vapor pressure

0.02 mmHg ( 100 °C)

Assay

≥90%

form

liquid

contains

75.0-125.0 hydroquinone as inhibitor

refractive index

n20/D 1.458 (lit.)

bp

>315 °C (lit.)

density

0.995 g/mL at 25 °C (lit.)

SMILES string

CC(=C)C(=O)OCCCCCCOC(=O)C(C)=C

InChI

1S/C14H22O4/c1-11(2)13(15)17-9-7-5-6-8-10-18-14(16)12(3)4/h1,3,5-10H2,2,4H3

InChI key

SAPGBCWOQLHKKZ-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Pictograms

Exclamation mark

Signal Word

Warning

Hazard Statements

Hazard Classifications

Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3

Target Organs

Respiratory system

Storage Class Code

10 - Combustible liquids

WGK

WGK 2

Flash Point(F)

228.2 °F - closed cup

Flash Point(C)

109 °C - closed cup

Personal Protective Equipment

dust mask type N95 (US), Eyeshields, Gloves

Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

William M Chirdon et al.
Dental materials : official publication of the Academy of Dental Materials, 22(2), 107-111 (2005-12-27)
This study aims to determine if aligned, short-fiber composites are capable of producing Fraunhofer diffraction patterns similar to those of human enamel sections and to validate the mechanism of diffraction by comparing the experimental and theoretical fiber spacings. Rectangular composite
V M Urban et al.
Biomedical chromatography : BMC, 20(4), 369-376 (2005-09-24)
Two high-performance liquid chromatographic methods for determination of residual monomer in dental acrylic resins are described. Monomers were detected by their UV absorbance at 230 nm, on a Nucleosil C18 (5 microm particle size, 100 A pore size, 15 x
L Giachetti et al.
Operative dentistry, 37(1), 28-36 (2011-09-29)
To evaluate the compatibility between aged siloranes and methacrylate-based composites by simulating a common repair-technique. Twenty substrates were constructed using silorane (Filtek Silorane, 3M ESPE) and methacrylate composites (Filtek Supreme XT, 3M ESPE). Substrates were aged in 0.9% NaCl solution
Masao Hanabusa et al.
Dental materials : official publication of the Academy of Dental Materials, 27(8), 818-824 (2011-05-21)
A great challenge regarding the ease-of-use of composites involves the development of 'self-adhesive' composites that no longer require a separate adhesive to bond to tooth enamel/dentin. To characterize the interfacial ultra-structure of an experimental self-adhesive filling material bonded to enamel
C Park et al.
Dental materials : official publication of the Academy of Dental Materials, 14(6), 385-393 (1999-09-14)
To explore possible enhancement of the mechanical properties of resin composites by aligning the filler particles. The resin for the composites consisted of urethane dimethacrylate (UDMA) and 1,6-hexanediol dimethacrylate (HDDMA) mixed in the ratio of 90 to 10; the filler

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service