- Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants.
Cholinesterase characterization of two autochthonous species of Ria de Aveiro (Diopatra neapolitana and Solen marginatus) and comparison of sensitivities towards a series of common contaminants.
Biomonitoring of chemical contamination requires the use of well-established and validated tools, including biochemical markers that can be potentially affected by exposure to important environmental toxicants. Cholinesterases (ChEs) are present in a large number of species and have been successfully used for decades to discriminate the environmental presence of specific groups of pollutants. The success of cholinesterase inhibition has been due to their usefulness as a biomarker to address the presence of organophosphate (OP) and carbamate (CB) pesticides. However, its use in ecotoxicology has not been limited to such chemicals, and several other putative classes of contaminants have been implicated in cholinesterasic impairment. Nevertheless, the use of cholinesterases as a monitoring tool requires its full characterization in species to be used as test organisms. This study analyzed and differentiated the various cholinesterase forms present in two autochthonous organisms from the Ria de Aveiro (Portugal) area, namely the polychaete Diopatra neapolitana and the bivalve Solen marginatus, to be used in subsequent monitoring studies. In addition, this study also validated the putative use of the now characterized cholinesterasic forms by analyzing the in vitro effects of common anthropogenic contaminants, such as detergents, pesticides, and metals. The predominant cholinesterasic form found in tissues of D. neapolitana was acetylcholinesterase, while homogenates of S. marginatus were shown to possess an atypical cholinesterasic form, with a marked preference for propionylthiocholine. Cholinesterases from D. neapolitana were generally non-responsive towards the majority of the selected chemicals. On the contrary, strong inhibitory effects were reported for ChEs of S. marginatus following exposure to the selected pesticides.