Skip to Content
Merck
  • Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells.

Chemically Defined Culture and Cardiomyocyte Differentiation of Human Pluripotent Stem Cells.

Current protocols in human genetics (2015-10-07)
Paul W Burridge, Alexandra Holmström, Joseph C Wu
ABSTRACT

Since the first discovery that human pluripotent stem cells (hPS cells) can differentiate to cardiomyocytes, efforts have been made to optimize the conditions under which this process occurs. One of the most effective methodologies to optimize this process is reductionist simplification of the medium formula, which eliminates complex animal-derived components to help reveal the precise underlying mechanisms. Here we describe our latest, cost-effective and efficient methodology for the culture of hPS cells in the pluripotent state using a modified variant of chemically defined E8 medium. We provide exact guidelines for cell handling under these conditions, including non-enzymatic EDTA passaging, which have been optimized for subsequent cardiomyocyte differentiation. We describe in depth the latest version of our monolayer chemically defined small molecule differentiation protocol, including metabolic selection-based cardiomyocyte purification and the addition of triiodothyronine to enhance cardiomyocyte maturation. Finally, we describe a method for the dissociation of hPS cell-derived cardiomyocytes, cryopreservation, and thawing.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Monoclonal Anti-α-Actinin (Sarcomeric) antibody produced in mouse, clone EA-53, ascites fluid
Roche
Liberase TH Research Grade, lyophilized, suitable for tissue processing, optimum pH 7.4