Skip to Content
Merck
  • Identification of factor VIII gene mutations in 101 patients with haemophilia A: mutation analysis by inversion screening and multiplex PCR and CSGE and molecular modelling of 10 novel missense substitutions.

Identification of factor VIII gene mutations in 101 patients with haemophilia A: mutation analysis by inversion screening and multiplex PCR and CSGE and molecular modelling of 10 novel missense substitutions.

Haemophilia : the official journal of the World Federation of Hemophilia (2005-09-01)
G Jayandharan, R V Shaji, S Baidya, S C Nair, M Chandy, A Srivastava
ABSTRACT

Haemophilia A (HA) is an X-linked bleeding disorder caused by diverse mutations in the human coagulation factor VIII (FVIII) gene. We have analysed DNA from 109 unrelated Indian patients with HA for their FVIII gene defects. Among these patients 89 (82%) had severe (FVIII:C <1%) HA, 11 (10%) had moderate (FVIII:C 1-5%) HA and nine (8%) had mild (FVIII:C 5-30%) HA. These patients were first screened for the common intron 22 and intron 1 inversions. Inversion negative samples were screened for point mutations by a multiplex PCR and conformation sensitive gel electrophoresis strategy. Mutations were identified in 101 of the 109 patients. These included two (2%) intron 1 and 51 (51%) intron 22 inversions, four (4%) gross deletions and 44 (43%) point mutations. Twenty-nine novel causative mutations, including 11 missense, seven frameshift, five nonsense mutations, three splice site defects and three gross deletions were detected. Ten of the novel missense mutations were studied by molecular modelling. Two different (Thr2253Pro and Pro1392fs) mutations were seen in four unrelated families and FVIII gene haplotyping suggested a common founder effect. Seven of these 109 patients had inhibitors. Among them, four had intron 22 inversions, one had a novel gross deletion (delexon 2-9) and one a nonsense mutation (Trp1535Stop). In one of these patients, no mutation could be identified in the FVIII gene. A Thr2253Pro novel mutation and an intron 22 inversion were identified in two female haemophiliacs. The data from this study suggests that the spectrum of gene defects in Indian patients with HA is as heterogeneous as reported in other populations.