Skip to Content
Merck
  • Insulin-resistance HCV infection-related affects vascular stiffness in normotensives.

Insulin-resistance HCV infection-related affects vascular stiffness in normotensives.

Atherosclerosis (2014-12-03)
Maria Perticone, Raffaele Maio, Eliezer Joseph Tassone, Giovanni Tripepi, Serena Di Cello, Sofia Miceli, Benedetto Caroleo, Angela Sciacqua, Anna Licata, Giorgio Sesti, Francesco Perticone
ABSTRACT

BACKGROUND AND AIMS. Arterial stiffness evaluated as pulse wave velocity, is an early marker of vascular damage and an independent predictor for cardiovascular events. We investigated if the insulin resistance/hyperinsulinemia chronic hepatitis C virus infection-related could influence arterial stiffness. METHODS. We enrolled 260 outpatients matched for age, body mass index, gender, ethnicity: 52 with never-treated uncomplicated chronic hepatitis C virus infection (HCV(+)), 104 never-treated hypertensives (HT) and 104 healthy subjects (NT). Pulse wave velocity was evaluated by a validated system employing high-fidelity applanation tonometry. We also measured: fasting plasma glucose and insulin, total, LDL- and HDL-cholesterol, triglyceride, creatinine, e-GFR-EPI, HOMA, quantitative HCV-RNA. RESULTS. HCV(+) patients with respect to NT had an increased pulse wave velocity (7.9 ± 2.1 vs 6.4 ± 2.1 m/s; P < 0.0001), similar to that observed in HT group (8.8 ± 3.2 m/s). HCV(+) patients, in comparison with NT, had higher triglyceride, creatinine, fasting insulin and HOMA (3.2 ± 1.3 vs 2.5 ± 1.0; P < 0.0001). At linear regression analysis, the correlation between pulse wave velocity and HOMA was similar in HT (r = 0.380, P < 0.0001) and HCV(+) (r = 0.369, P = 0.004) groups. At multiple regression analysis, HOMA resulted the major determinant of pulse wave velocity in all groups, explaining respectively 11.8%, 14.4% and 13.6% of its variation in NT, HT and HCV(+). At correlational analysis hepatitis C virus-RNA and HOMA demonstrated a strong and linear relationship between them, explaining the 72.4% of their variation (P = 0.022). CONCLUSIONS. We demonstrated a significant and direct correlation between HOMA and pulse wave velocity in HCV(+) patients, similar to that observed in hypertensives.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Cholesterol, tested according to Ph. Eur.
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Supelco
D-(+)-Glucose, analytical standard
Sigma-Aldrich
D-(+)-Glucose, tested according to Ph. Eur.
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Dextrose, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Cholesterol, Plant-Derived, SyntheChol®
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
USP
Dextrose, United States Pharmacopeia (USP) Reference Standard