Skip to Content
Merck
  • Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

Preparation and application of crosslinked poly(sodium acrylate)--coated magnetite nanoparticles as corrosion inhibitors for carbon steel alloy.

Molecules (Basel, Switzerland) (2015-01-17)
Ayman M Atta, Gamal A El-Mahdy, Hamad A Al-Lohedan, Ashraf M El-Saeed
ABSTRACT

This work presents a new method to prepare poly(sodium acrylate) magnetite composite nanoparticles. Core/shell type magnetite nanocomposites were synthesized using sodium acrylate as monomer and N,N-methylenebisacrylamide (MBA) as crosslinker. Microemulsion polymerization was used for constructing core/shell structures with magnetite nanoparticles as core and poly(sodium acrylate) as shell. Fourier transform infrared spectroscopy (FTIR) was employed to characterize the nanocomposite chemical structure. Transmittance electron microscopy (TEM) was used to examine the morphology of the modified poly(sodium acrylate) magnetite composite nanoparticles. These particle will be evaluated for effective anticorrosion behavior as a hydrophobic surface on stainless steel. The composite nanoparticles has been designed by dispersing nanocomposites which act as a corrosion inhibitor. The inhibition effect of AA-Na/magnetite composites on steel corrosion in 1 M HCl solution was investigated using potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Polarization measurements indicated that the studied inhibitor acts as mixed type corrosion inhibitor. EIS spectra exhibit one capacitive loop. The different techniques confirmed that the inhibition efficiency reaches 99% at 50 ppm concentration. This study has led to a better understanding of active anticorrosive magnetite nanoparticles with embedded nanocomposites and the factors influencing their anticorrosion performance.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 5 nm avg. part. size (TEM), PEG functionalized, 1 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Hexane, ReagentPlus®, ≥99%
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 30 nm avg. part. size (TEM), amine functionalized, 1 mg/mL Fe in H2O, dispersion
Oleic acid, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size (TEM), carboxylic acid functionalized, 5 mg/mL Fe in H2O, dispersion
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 10 nm avg. part. size, 5 mg/mL in toluene
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 20 nm avg. part. size, 5 mg/mL in toluene
Supelco
1-Decanol, analytical standard
Millipore
TDA Reagent, suitable for microbiology
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, ReagentPlus®, 99%
Sigma-Aldrich
Iron(II,III) oxide, 99.99% trace metals basis
Sigma-Aldrich
Iron(II,III) oxide, powder, <5 μm, 95%
Sigma-Aldrich
1-Decanol, ≥98%
Sigma-Aldrich
Iron(III) chloride solution, 0.2 M in 2-methyltetrahydrofuran
Sigma-Aldrich
Iron oxide(II,III), magnetic nanoparticles solution, 5 nm avg. part. size, 5 mg/mL in toluene
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, ≥99.5%, purified by redistillation
Sigma-Aldrich
1-Decanol, 98%
Sigma-Aldrich
1-Decanol, ≥98%, FCC, FG
Sigma-Aldrich
Ammonium hydroxide solution, BioUltra, ~1 M NH3 in H2O (T)
Sigma-Aldrich
Oleic acid, natural, FCC
Sigma-Aldrich
Oleic acid, meets analytical specification of Ph, Eur., 65.0-88.0% (GC)
Supelco
Hexane, analytical standard
Sigma-Aldrich
Oleic acid, technical grade, 90%
Supelco
Oleic acid, analytical standard
Sigma-Aldrich
Hexane, puriss., ≥95% (GC)
Sigma-Aldrich
Oleic acid, ≥99% (GC)
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, BioReagent, suitable for electrophoresis, ≥99.0%
Sigma-Aldrich
N,N,N′,N′-Tetramethylethylenediamine, BioReagent, for molecular biology, ≥99% (GC)
Sigma-Aldrich
Oleic acid, BioReagent, suitable for cell culture
Sigma-Aldrich
Iron(II,III) oxide, nanopowder, 50-100 nm particle size (SEM), 97% trace metals basis