Skip to Content
Merck
  • Extracellular delivery of modified oligonucleotide and superparamagnetic iron oxide nanoparticles from a degradable hydrogel triggered by tumor acidosis.

Extracellular delivery of modified oligonucleotide and superparamagnetic iron oxide nanoparticles from a degradable hydrogel triggered by tumor acidosis.

Biomaterials (2013-03-13)
Ching-Wen Lin, S-Ja Tseng, Ivan M Kempson, Shuenn-Chen Yang, Tse-Ming Hong, Pan-Chyr Yang
ABSTRACT

Chemically modified antisense RNA oligonucleotides (antagomir) offer promise for cancer therapies but suffer from poor therapeutic effect after systemic administration. Chemical modification or loading in degradable hydrogels can offer improvements in the accuracy and efficacy for sustained delivery at specific sites. In our approach, antagomir were entrapped with degradable poly(ethylene glycol) (PEG)-based hydrogels, with and without incorporation of imidazole. Superparamagnetic iron oxide nanoparticles (SPION) were simultaneously loaded with intent for magnetic resonance imaging (MRI). The incorporation of imidazole into the PEG hydrogels led to a tunable-pH-response that dictated hydrogel swelling ratio and release rate of antagomir and SPION. As a result, the PEG-imidazole hydrogel swelling ratio and degradation over a 5 week period changed up to 734% and 149% as the pH dropped from 7.4 to 6.7, respectively. The swelling ratio of PEG-imidazole hydrogels was completely reversible over repeatable cycles of pH change. The stimuli-responsive behavior of PEG-imidazole hydrogels was used for the release of antagomir and SPION under conditions consistent with tumor acidosis. This manuscript demonstrates feasibility in designing tunable-pH-responsive hydrogels for loading multimodality therapeutic and contrast agents to enhance the bioactivity of chemically modified antisense RNA oligonucleotide and SPION for acidosis-related tumor therapy and MRI imaging applications.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Imidazole, ReagentPlus®, 99%, Redi-Dri, free-flowing
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 20,000, contains MEHQ as inhibitor
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 2000, contains ~1000 ppm MeHQ as stabilizer
Imidazole, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 6,000, contains 1000 ppm 4-methoxyphenol as inhibitor
Sigma-Aldrich
Imidazole, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Imidazole, puriss. p.a., ≥99.5% (GC)
Sigma-Aldrich
Imidazole, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 550, contains 80-120 ppm MEHQ as inhibitor, 270-330 ppm BHT as inhibitor
Sigma-Aldrich
Imidazole, ReagentPlus®, 99%
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 750, contains 900-1100 ppm MEHQ as inhibitor
Sigma-Aldrich
Imidazole, ACS reagent, ≥99% (titration)
Sigma-Aldrich
Imidazole, ≥99% (titration), crystalline
Sigma-Aldrich
Imidazole, for molecular biology, ≥99% (titration)
Sigma-Aldrich
Imidazole hydrochloride
Supelco
Imidazole, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Poly(ethylene glycol) dimethacrylate, average Mn 10,000, contains MEHQ as inhibitor
Sigma-Aldrich
Imidazole buffer Solution, BioUltra, 1 M in H2O