Skip to Content
Merck
  • ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis.

ATP analogs and muscle contraction: mechanics and kinetics of nucleoside triphosphate binding and hydrolysis.

Biophysical journal (1998-06-23)
M Regnier, D M Lee, E Homsher
ABSTRACT

The mechanical behavior of skinned rabbit psoas muscle fiber contractions and in vitro motility of F-actin (Vf) have been examined using ATP, CTP, UTP, or their 2-deoxy forms (collectively designated as nucleotide triphosphates or NTPs) as contractile substrates. Measurements of actin-activated heavy meromyosin (HMM) NTPase, the rates of NTP binding to myosin and actomyosin, NTP-mediated acto-HMM dissociation, and NTP hydrolysis by acto-HMM were made for comparison to the mechanical results. The data suggest a very similar mechanism of acto-HMM NTP hydrolysis. Whereas all NTPs studied support force production and stiffness that vary by a factor 2 or less, the unloaded shortening velocity (Vu) of muscle fibers varies by almost 10-fold. 2-Deoxy ATP (dATP) was unique in that Vu was 30% greater than with ATP. Parallel behavior was observed between Vf and the steady-state maximum actin-activated HMM ATPase rate. Further comparisons suggest that the variation in force correlates with the rate and equilibrium constant for NTP cleavage; the variations in Vu or Vf are related to the rate of cross-bridge dissociation caused by NTP binding or to the rate(s) of product release.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MONOCLONAL ANTI-CREATINE KINASE BB (CENTER) antibody produced in mouse, clone 893CT29.1.1, IgG fraction of antiserum, buffered aqueous solution