Skip to Content
Merck
  • Nrf2 mediates hypoxia-inducible HIF1α activation in kidney tubular epithelial cells.

Nrf2 mediates hypoxia-inducible HIF1α activation in kidney tubular epithelial cells.

American journal of physiology. Renal physiology (2021-01-26)
Haranatha R Potteti, Patrick M Noone, Chandramohan R Tamatam, Aparna Ankireddy, Sanjeev Noel, Hamid Rabb, Sekhar P Reddy
ABSTRACT

Nuclear factor erythroid 2-related factor 2 (Nrf2) and hypoxia-inducible factor-1α (HIF1α) transcription factors protect against ischemic acute kidney injury (AKI) by upregulating metabolic and cytoprotective gene expression. In this study, we tested the hypothesis that Nrf2 is required for HIF1α-mediated hypoxic responses using Nrf2-sufficient (wild-type) and Nrf2-deficient (Nrf2-/-) primary murine renal/kidney tubular epithelial cells (RTECs) and human immortalized tubular epithelial cells (HK2 cells) with HIF1 inhibition and activation. The HIF1 pathway inhibitor digoxin blocked hypoxia-stimulated HIF1α activation and heme oxygenase (HMOX1) expression in HK2 cells. Hypoxia-mimicking cobalt (II) chloride-stimulated HMOX1 expression was significantly lower in Nrf2-/- RTECs than in wild-type counterparts. Similarly, hypoxia-stimulated HIF1α-dependent metabolic gene expression was markedly impaired in Nrf2-/- RTECs. Nrf2 deficiency impaired hypoxia-induced HIF1α stabilization independent of increased prolyl 4-hydroxylase gene expression. We found decreased HIF1α mRNA levels in Nrf2-/- RTECs under both normoxia and hypoxia-reoxygenation conditions. In silico analysis and chromatin immunoprecipitation assays demonstrated Nrf2 binding to the HIF1α promoter in normoxia, but its binding decreased in hypoxia-exposed HK2 cells. However, Nrf2 binding at the HIF1α promoter was enriched following reoxygenation, demonstrating that Nrf2 maintains constitutive HIF1α expression. Consistent with this result, we found decreased levels of Nrf2 in hypoxia and that were restored following reoxygenation. Inhibition of mitochondrial complex I prevented hypoxia-induced Nrf2 downregulation and also increased basal Nrf2 levels. These results demonstrate a crucial role for Nrf2 in optimal HIF1α activation in hypoxia and that mitochondrial signaling downregulates Nrf2 levels in hypoxia, whereas reoxygenation restores it. Nrf2 and HIF1α interact to provide optimal metabolic and cytoprotective responses in ischemic AKI.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, ≥97.5% (HPLC)
Sigma-Aldrich
Protease Inhibitor Cocktail, for use with mammalian cell and tissue extracts, DMSO solution
Sigma-Aldrich
Bisindolylmaleimide I, A highly selective, cell-permeable, and reversible protein kinase C (PKC) inhibitor (IC₅₀ = 10 nM) that is structurally similar to staurosporine.
Sigma-Aldrich
Chromatin Immunoprecipitation (ChIP) Assay Kit, Contains all necessary reagents to perform 22 individual chromatin immunoprecipitation (ChIP) reactions using inexpensive protein A agarose beads.
Sigma-Aldrich
Cobalt(II) chloride, purum p.a., anhydrous, ≥98.0% (KT)
Sigma-Aldrich
MG-132, Ready Made Solution, ≥90% (HPLC)
Sigma-Aldrich
RIPA Buffer
Sigma-Aldrich
Cycloheximide solution, Ready-Made Solution, microbial, 100 mg/mL in DMSO, Suitable for cell culture
Sigma-Aldrich
Antimycin A from Streptomyces sp.
Sigma-Aldrich
Rotenone, A mitochondrial toxin and a potent, reversible, and competitive inhibitor of complex I (NADH-CoQ reductase) of the respiratory chain.