- Inhibition of fatty acid oxidation by 2-bromooctanoate. Evidence for the enzymatic formation of 2-bromo-3-ketooctanoyl coenzyme A and the inhibition of 3-ketothiolase.
Inhibition of fatty acid oxidation by 2-bromooctanoate. Evidence for the enzymatic formation of 2-bromo-3-ketooctanoyl coenzyme A and the inhibition of 3-ketothiolase.
Incubation of rat liver mitochondria with 10 microM DL-2-bromooctanoate causes complete and irreversible inactivation of 3-ketothiolase I (acyl-CoA:acetyl-CoA C-acyltransferase). Evidence is presented that mitochondria convert bromooctanoate to 2-bromo-3-ketooctanoyl-CoA, an alpha-haloketone which is probably the active form of the inhibitor. The inactivation is accompanied by incorporation of radioactivity from [1-14C]bromooctanoate into the enzyme. Bromooctanoate does not affect the activities of the other enzymes of beta-oxidation, except for 3-ketothiolase II (acetyl-CoA:acetyl-CoA C-acetyltransferase), which becomes partially inhibited. Evidence is also presented that various enzymes of beta-oxidation can use 2-bromooctanoyl-CoA and its beta-oxidation products as substrates.