Skip to Content
Merck
  • [Metabolic engineering of yeast Hansenula polymorpha for construction of efficient ethanol producers].

[Metabolic engineering of yeast Hansenula polymorpha for construction of efficient ethanol producers].

TSitologiia i genetika (2014-01-21)
K V Dmitruk, A A Sibirnyĭ
ABSTRACT

Until recently, the methylotrophic yeast was not considered as a potential producer of biofuels, particularly of ethanol from lignocellulosic hydrolysates. The first work published 10 years ago reveals the ability of thermotolerant methylotrophic yeast Hansenula polymorpha to ferment xylose--one of the main sugars of lignocellulosic hydrolysates, which has made these yeast promising organism for high temperature alcoholic fermentation. Such feature of the H. polymorpha can be used in the implementation of potentially effective process of simultaneous saccharification and fermentation (SSF) of raw materials. SSF allows combining enzymatic hydrolysis of raw materials with the conversion of produced sugars into ethanol: enzymes hydrolyze polysaccharides to monomers, which are immediately consumed by microorganisms-producers of ethanol. However, the efficiency of alcoholic fermentation of major sugars realized after hydrolysis of lignocellulosic raw materials, and especially xylose, by wild strains of H. polymorpha requires significant improvement. In this review the main results of metabolic engineering of H. polymorpha for the construction of improved producers of ethanol from xylose, starch, xylan, and glycerol, as well as strains with increased tolerance to high temperature and ethanol are represented.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Glycerol solution, 83.5-89.5% (T)
Sigma-Aldrich
Reagent Alcohol, anhydrous, ≤0.003% water
Sigma-Aldrich
Starch from wheat, Unmodified
Sigma-Aldrich
Starch from potato, Powder
Sigma-Aldrich
Starch from potato, Soluble
Sigma-Aldrich
Trehalase from porcine kidney, buffered aqueous glycerol solution, ≥1.0 units/mg protein
Sigma-Aldrich
Starch from potato, suitable for electrophoresis
Supelco
Dehydrated Alcohol, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Ethanol-500, 500 mg/dL in H2O, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
USP
Dehydrated Alcohol, United States Pharmacopeia (USP) Reference Standard
Supelco
Ethanol Calibration Kit, ampule of 10 × 1.2 mL, certified reference material, Cerilliant®
Supelco
Ethanol, standard for GC
Sigma-Aldrich
Ethanol, tested according to Ph. Eur.
Sigma-Aldrich
Starch, puriss. p.a., from potato, reag. ISO, reag. Ph. Eur., soluble
Sigma-Aldrich
Ethanol, for residue analysis
Sigma-Aldrich
Glycerol, FCC, FG
Sigma-Aldrich
Glycerol, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Glycerol, tested according to Ph. Eur., anhydrous
Sigma-Aldrich
Ethanol, purum, secunda spirit, denaturated with 2% 2-butanone, S15, ~96% (based on denaturant-free substance)
Sigma-Aldrich
Starch, from potato, tested according to Ph. Eur.
Sigma-Aldrich
Ethyl alcohol, Pure, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Starch from rice
Sigma-Aldrich
Starch from corn
Sigma-Aldrich
Starch from corn, practical grade
Sigma-Aldrich
Glycerol, for molecular biology, ≥99.0%
Sigma-Aldrich
Glycerol, BioXtra, ≥99% (GC)
Sigma-Aldrich
Starch from corn, Unmodified waxy corn starch of essentially pure amylopectin; contains only trace amounts of amylose.
Supelco
Starch from corn, for use with Total Dietary Fiber Control Kit, TDF-C10
Sigma-Aldrich
Glycerol, ≥99.5%
Sigma-Aldrich
Glycerin, meets USP testing specifications