Skip to Content
Merck
  • Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part II. Aqueous normal-phase liquid chromatography.

Cross-linker effects on the separation efficiency on (poly)methacrylate capillary monolithic columns. Part II. Aqueous normal-phase liquid chromatography.

Journal of chromatography. A (2013-04-11)
Magda Staňková, Pavel Jandera, Veronika Škeříková, Jiří Urban
ABSTRACT

We synthesized seven different polymethacrylate monolithic capillary columns using N,N-dimethyl-N-metacryloxyethyl-N-(3-sulfopropyl) ammonium betaine functional monomer (MEDSA) and various cross-linking monomers differing in the polarity and size. The efficiency of monolithic columns for polar low-molecular compounds in the aqueous normal-phase (HILIC) mode depends rather on the polarity, than on the size of the cross-linker molecules. Cross-linking molecules, which exhibit high polarity can produce poly(methacrylate) monoliths with an increase in pore sizes below 50nm. Columns prepared with pentaerythritol triacrylate or bisphenol A dimethacrylate cross-linkers show large inner pore (mesopore) porosity, and provide poor efficiency, whereas columns with trioxyethylene dimethacrylate (TriEDMA) and tetraoxyethylene dimethacrylate (TeEDMA) cross-linkers showed poor permeability. Columns prepared using dioxyethylene dimethacrylate (DiEDMA), and especially glycerolate dimethacrylate (BIGDMA) cross-linkers, showed best efficiency, with more 60,000-70,000 theoretical plates/m, almost twice in comparison to (poly)methylene dimethacrylate (HEDMA) in the HILIC mode. All columns show dual retention mechanism and can be used for separations of low-molcular compounds such as phenolic acids in the HILIC mode in acetonitrile-rich mobile phases and in the reversed-phase mode in mobile phases with higher concentrations of water. Some columns show broad pore distribution and can be used for size-exclusion chromatography of non-polar polymers in tetrahydrofuran.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Poly(methacrylic acid, sodium salt) solution, average Mn ~5,400, average Mw ~9,500 by GPC, 30 wt. % in H2O
Sigma-Aldrich
Poly(methacrylic acid, sodium salt) solution, average Mw 4,000-6,000, 40 wt. % in H2O