Skip to Content
Merck
  • Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease.

Muscle Proteomic Profile before and after Enzyme Replacement Therapy in Late-Onset Pompe Disease.

International journal of molecular sciences (2021-04-04)
Manuela Moriggi, Daniele Capitanio, Enrica Torretta, Pietro Barbacini, Cinzia Bragato, Patrizia Sartori, Maurizio Moggio, Lorenzo Maggi, Marina Mora, Cecilia Gelfi
ABSTRACT

Mutations in the acidic alpha-glucosidase (GAA) coding gene cause Pompe disease. Late-onset Pompe disease (LOPD) is characterized by progressive proximal and axial muscle weakness and atrophy, causing respiratory failure. Enzyme replacement therapy (ERT), based on recombinant human GAA infusions, is the only available treatment; however, the efficacy of ERT is variable. Here we address the question whether proteins at variance in LOPD muscle of patients before and after 1 year of ERT, compared withhealthy age-matched subjects (CTR), reveal a specific signature. Proteins extracted from skeletal muscle of LOPD patients and CTR were analyzed by combining gel based (two-dimensional difference gel electrophoresis) and label-free (liquid chromatography-mass spectrometry) proteomic approaches, and ingenuity pathway analysis. Upstream regulators targeting autophagy and lysosomal tethering were assessed by immunoblotting. 178 proteins were changed in abundance in LOPD patients, 47 of them recovered normal level after ERT. Defects in oxidative metabolism, muscle contractile protein regulation, cytoskeletal rearrangement, and membrane reorganization persisted. Metabolic changes, ER stress and UPR (unfolded protein response) contribute to muscle proteostasis dysregulation with active membrane remodeling (high levels of LC3BII/LC3BI) and accumulation of p62, suggesting imbalance in the autophagic process. Active lysosome biogenesis characterizes both LOPD PRE and POST, unparalleled by molecules involved in lysosome tethering (VAMP8, SNAP29, STX17, and GORASP2) and BNIP3. In conclusion this study reveals a specific signature that suggests ERT prolongation and molecular targets to ameliorate patient's outcome.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-STX17 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-p62/SQSTM1 antibody produced in rabbit, ~1 mg/mL, affinity isolated antibody, buffered aqueous solution
Sigma-Aldrich
Anti-GORASP2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-BNIP3 antibody, Mouse monoclonal, clone ANa40, purified from hybridoma cell culture