Skip to Content
Merck
  • Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages.

Comparative evaluation of itaconate and its derivatives reveals divergent inflammasome and type I interferon regulation in macrophages.

Nature metabolism (2020-07-23)
Amanda Swain, Monika Bambouskova, Hyeryun Kim, Prabhakar Sairam Andhey, Dustin Duncan, Karine Auclair, Victor Chubukov, Donald M Simons, Thomas P Roddy, Kelly M Stewart, Maxim N Artyomov
ABSTRACT

Following activation, macrophages undergo extensive metabolic rewiring1,2. Production of itaconate through the inducible enzyme IRG1 is a key hallmark of this process3. Itaconate inhibits succinate dehydrogenase4,5, has electrophilic properties6 and is associated with a change in cytokine production4. Here, we compare the metabolic, electrophilic and immunologic profiles of macrophages treated with unmodified itaconate and a panel of commonly used itaconate derivatives to examine its role. Using wild-type and Irg1-/- macrophages, we show that neither dimethyl itaconate, 4-octyl itaconate nor 4-monoethyl itaconate are converted to intracellular itaconate, while exogenous itaconic acid readily enters macrophages. We find that only dimethyl itaconate and 4-octyl itaconate induce a strong electrophilic stress response, in contrast to itaconate and 4-monoethyl itaconate. This correlates with their immunosuppressive phenotype: dimethyl itaconate and 4-octyl itaconate inhibited IκBζ and pro-interleukin (IL)-1β induction, as well as IL-6, IL-10 and interferon-β secretion, in an NRF2-independent manner. In contrast, itaconate treatment suppressed IL-1β secretion but not pro-IL-1β levels and, surprisingly, strongly enhanced lipopolysaccharide-induced interferon-β secretion. Consistently, Irg1-/- macrophages produced lower levels of interferon and reduced transcriptional activation of this pathway. Our work establishes itaconate as an immunoregulatory, rather than strictly immunosuppressive, metabolite and highlights the importance of using unmodified itaconate in future studies.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Methylsuccinic acid, 99%
Sigma-Aldrich
Succinic acid-13C4, 99 atom % 13C
Sigma-Aldrich
D,L-Sulforaphane, An isothiocyanate isolated from broccoli that acts as a potent inducer of phase II detoxifying enzymes in mouse tissues and murine hepatoma cells in culture.