Skip to Content
Merck
  • Formation of 1,3,8-tribromodibenzo-p-dioxin and 2,4,6,8-tetrabromodibenzofuran in the oxidation of synthetic hydroxylated polybrominated diphenyl ethers by iron and manganese oxides under dry conditions.

Formation of 1,3,8-tribromodibenzo-p-dioxin and 2,4,6,8-tetrabromodibenzofuran in the oxidation of synthetic hydroxylated polybrominated diphenyl ethers by iron and manganese oxides under dry conditions.

Environmental science and pollution research international (2018-08-29)
Jiafeng Ding, Gaoyuan Long, Yang Luo, Runze Sun, Mengxia Chen, Yajun Li, Yanfang Zhou, Xinhua Xu, Weirong Zhao
ABSTRACT

Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are ubiquitous and highly toxic emerging endocrine disruptors found in surface and subsurface soils and clay deposits. Seriously, they could be easily transformed to the more toxic dioxins (PBDD/Fs) in photochemical processes and incineration, but the spontaneous formation of PBDD/Fs has rarely been reported. This study focused on the formation of 1,3,8-tribromodibenzo-p-dioxin (1,3,8-TrBDD) and 2,4,6,8-tetrabromodibenzofuran (2,4,6,8-TeBDF) from 2'-OH-BDE-68 and 2,2'-diOH-BB-80 under the oxidization of iron and manganese oxides (goethite and MnOx). Approximately 0.09 μmol/kg (2.33%) and 0.17 μmol/kg (4.15%) were transformed to 1,3,8-TrBDD and 2,4,6,8-TeBDF by goethite in 8 days and a higher conversion 0.15 μmol/kg (3.77%) and 0.23 μmol/kg (5.74%) were observed for MnOx in 4 days. However, the formation of PBDD/Fs, probably proceeding via Smiles rearrangements and bromine elimination processes, was greatly inhibited by the presence of water. Transformation of OH-PBDEs by goethite and MnOx was accompanied by release of Fe and Mn ions and the possible pathways for the formation of reaction products were proposed. In view of the ubiquity of OH-PBDEs and metal oxides in the environment, oxidation of OH-PBDEs mediated by goethite and MnOx is likely an abiotic route for the formation of PBDD/Fs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Goethite, 30-63% Fe
Sigma-Aldrich
2-Fluorobenzaldehyde, 97%