Skip to Content
Merck
  • On-chip constructive cell-network study (II): on-chip quasi-in vivo cardiac toxicity assay for ventricular tachycardia/fibrillation measurement using ring-shaped closed circuit microelectrode with lined-up cardiomyocyte cell network.

On-chip constructive cell-network study (II): on-chip quasi-in vivo cardiac toxicity assay for ventricular tachycardia/fibrillation measurement using ring-shaped closed circuit microelectrode with lined-up cardiomyocyte cell network.

Journal of nanobiotechnology (2011-09-21)
Fumimasa Nomura, Tomoyuki Kaneko, Akihiro Hattori, Kenji Yasuda
ABSTRACT

Conventional in vitro approach using human ether-a-go-go related gene (hERG) assay has been considered worldwide as the first screening assay for cardiac repolarization safety. However, it does not always oredict the potential QT prolongation risk or pro-arrhythmic risk correctly. For adaptable preclinical strategiesto evaluate global cardiac safety, an on-chip quasi-in vivo cardiac toxicity assay for lethal arrhythmia (ventricular tachyarrhythmia) measurement using ring-shaped closed circuit microelectrode chip has been developed. The ventricular electrocardiogram (ECG)-like field potential data, which includes both the repolarization and the conductance abnormality, was acquired from the self-convolutied extracellular field potentials (FPs) of a lined-up cardiomyocyte network on a circle-shaped microelectrode in an agarose microchamber. When Astemisol applied to the closed-loop cardiomyocyte network, self-convoluted FP profile of normal beating changed into an early afterdepolarization (EAD) like waveform, and then showed ventricular tachyarrhythmias and ventricular fibrilations (VT/Vf). QT-prolongation-like self-convoluted FP duration prolongation and its fluctuation increase was also observed according to the increase of Astemizole concentration. The results indicate that the convoluted FPs of the quasi-in vivo cell network assay includes both of the repolarization data and the conductance abnormality of cardiomyocyte networks has the strong potential to prediction lethal arrhythmia.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Astemizole, ≥98% (HPLC)