Skip to Content
Merck

A metal-peptide capsule by multiple ring threading.

Nature communications (2019-12-14)
Tomohisa Sawada, Yuuki Inomata, Koya Shimokawa, Makoto Fujita
ABSTRACT

Cavity creation is a key to the origin of biological functions. Small cavities such as enzyme pockets are created simply through liner peptide folding. Nature can create much larger cavities by threading and entangling large peptide rings, as learned from gigantic virus capsids, where not only chemical structures but the topology of threaded rings must be controlled. Although interlocked molecules are a topic of current interest, they have for decades been explored merely as elements of molecular machines, or as a synthetic challenge. No research has specifically targeted them for, and succesfully achieved, cavity creation. Here we report the emergence of a huge capsular framework via multiple threading of metal-peptide rings. Six equivalent C4-propeller-shaped rings, each consisting of four oligopeptides and Ag+, are threaded by each other a total of twelve times (crossing number: 24) to assemble into a well-defined 4 nm-sized sphere, which acts as a huge molecular capsule.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Hydroxy-7-azabenzotriazole solution, ~0.6 M in DMF
Sigma-Aldrich
Boc-Asp(OBzl)-OH, ≥99.0% (sum of enantiomers, HPLC)
Sigma-Aldrich
Benzene-1,3,5-triacetic acid, ≥97.0% (T)
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide, ≥97.0% (T)