Skip to Content
Merck
  • Spindle Scaling Is Governed by Cell Boundary Regulation of Microtubule Nucleation.

Spindle Scaling Is Governed by Cell Boundary Regulation of Microtubule Nucleation.

Current biology : CB (2020-11-21)
Elisa Maria Rieckhoff, Frederic Berndt, Maria Elsner, Stefan Golfier, Franziska Decker, Keisuke Ishihara, Jan Brugués
ABSTRACT

Cellular organelles such as the mitotic spindle adjust their size to the dimensions of the cell. It is widely understood that spindle scaling is governed by regulation of microtubule polymerization. Here, we use quantitative microscopy in living zebrafish embryos and Xenopus egg extracts in combination with theory to show that microtubule polymerization dynamics are insufficient to scale spindles and only contribute below a critical cell size. In contrast, microtubule nucleation governs spindle scaling for all cell sizes. We show that this hierarchical regulation arises from the partitioning of a nucleation inhibitor to the cell membrane. Our results reveal that cells differentially regulate microtubule number and length using distinct geometric cues to maintain a functional spindle architecture over a large range of cell sizes.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dimethyl sulfoxide, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
trans-2-Phenylcyclopropylamine hemisulfate salt
Sigma-Aldrich
Agarose, low gelling temperature, BioReagent, for molecular biology
Sigma-Aldrich
Chymostatin, microbial