Skip to Content
Merck
  • EGFR-mediated tyrosine phosphorylation of STING determines its trafficking route and cellular innate immunity functions.

EGFR-mediated tyrosine phosphorylation of STING determines its trafficking route and cellular innate immunity functions.

The EMBO journal (2020-09-15)
Chenyao Wang, Xin Wang, Manoj Veleeparambil, Patricia M Kessler, Belinda Willard, Saurabh Chattopadhyay, Ganes C Sen
ABSTRACT

STING (STimulator of INterferon Genes) mediates protective cellular response to microbial infection and tissue damage, but its aberrant activation can lead to autoinflammatory diseases. Upon ligand stimulation, the endoplasmic reticulum (ER) protein STING translocates to endosomes for induction of interferon production, while an alternate trafficking route delivers it directly to the autophagosomes. Here, we report that phosphorylation of a specific tyrosine residue in STING by the epidermal growth factor receptor (EGFR) is required for directing STING to endosomes, where it interacts with its downstream effector IRF3. In the absence of EGFR-mediated phosphorylation, STING rapidly transits into autophagosomes, and IRF3 activation, interferon production, and antiviral activity are compromised in cell cultures and mice, while autophagic activity is enhanced. Our observations illuminate a new connection between the tyrosine kinase activity of EGFR and innate immune functions of STING and suggest new experimental and therapeutic approaches for selective regulation of STING functions.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® pLKO.1-puro Non-Mammalian shRNA Control Plasmid DNA, Targets no known mammalian genes
Sigma-Aldrich
Genistein, Soybean, A cell-permeable, reversible, substrate competitive inhibitor of protein tyrosine kinases, including autophosphorylation of epidermal growth factor receptor kinase (IC₅₀ = 2.6 µM).