Skip to Content
Merck
  • Simultaneous Real-Time Detection of Pregnancy-Associated Plasma Protein-A and -A2 Using a Graphene Oxide-Based Surface Plasmon Resonance Biosensor.

Simultaneous Real-Time Detection of Pregnancy-Associated Plasma Protein-A and -A2 Using a Graphene Oxide-Based Surface Plasmon Resonance Biosensor.

International journal of nanomedicine (2020-04-11)
Shi-Yuan Fan, Nan-Fu Chiu, Chie-Pein Chen, Chia-Chen Chang, Chen-Yu Chen
ABSTRACT

Pregnancy-associated plasma protein-A and -A2 (PAPP-A and -A2) are principally expressed in placental trophoblasts and play a critical role in the regulation of fetal and placental growth. PAPP-A2 shares 45% amino acid similarity with PAPP-A. This study aimed to investigate the efficacy of real-time detection of PAPP-A and PAPP-A2 using a novel surface plasmon resonance (SPR) biosensor based on graphene oxide (GO). Traditional SPR and GO-based SPR chips were fabricated to measure PAPP-A and PAPP-A2 concentrations. We compared SPR response curves of PAPP-A and PAPP-A2 between traditional SPR and GO-SPR biosensors. We also performed interference tests and specificity analyses among PAPP-A, PAPP-A2, and mixed interference proteins. The time to detect PAPP-A and PAPP-A2 was about 150 seconds with both traditional SPR and GO-SPR biosensors. Approximately double SPR angle shifts were noted with the GO-SPR biosensor compared to the traditional SPR biosensor at a PAPP-A and PAPP-A2 concentration of 5 μg/mL. The limit of detection of the GO-SPR biosensor was as low as 0.5 ng/mL for both PAPP-A and PAPP-A2. Interference testing revealed that almost all of the protein bonded on the GO-SPR biosensor with anti-PAPP-A from the mixture of proteins was PAPP-A, and that almost no other proteins were captured except for PAPP-A2. However, the SPR signal of PAPP-A2 (5.75 mdeg) was much smaller than that of PAPP-A (13.76 mdeg). Similar results were noted with anti-PAPP-A2, where almost all of the protein bonded on the GO-SPR biosensor was PAPP-A2. The SPR signal of PAPP-A (5.17 mdeg) was much smaller than that of PAPP-A2 (13.94 mdeg). The GO-SPR biosensor could distinguish PAPP-A and PAPP-A2 from various mixed interference proteins with high sensitivity and specificity. It could potentially be used to measure PAPP-A and PAPP-A2 in clinical blood samples during pregnancy.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Anti-PAPPA antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
8-Mercaptooctanoic acid, 95%
Sigma-Aldrich
Anti-PAPPA2 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide, ≥97.0% (T)
Sigma-Aldrich
Cystamine dihydrochloride, purum, ≥98.0% (AT)