Skip to Content
Merck
All Photos(2)

Key Documents

739332

Sigma-Aldrich

PEDOT:PSS

greener alternative

high-conductivity grade, 1.1% aqueous dispersion, surfactant-free

Synonym(s):

Orgacon ICP 1050, PEDOT:PSS, Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate)

Sign Into View Organizational & Contract Pricing


About This Item

MDL number:
UNSPSC Code:
12352103
NACRES:
NA.23

product name

Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), 1.1% in H2O, surfactant-free, high-conductivity grade

grade

high-conductivity grade

Quality Level

form

liquid

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

concentration

1.1% in H2O

resistance

<100 Ω/sq, <80% visible light transmission (40μm wet)

refractive index

n20/D 1.334

pH

<2.5

viscosity

30-100 cP(20 °C)

density

0.999 g/mL at 25 °C

greener alternative category

storage temp.

2-8°C

Looking for similar products? Visit Product Comparison Guide

General description

Aqueous surfactant-free dispersion of high conductivity grade PEDOT:PSS polymer. Optimal performance in transparent conductive coatings may require addition of formulation ingredients (e.g. surfactants and high-boiling solvents).Conducting polymer such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT/PSS) is widely used in various organic optoelectronic devices. PEDOT: PSS is a blend of cationic polythiopene derivative, doped with a polyanion. High electrical conductivity and good oxidation resistance of such polymers make it suitable for electromagnetic shielding and noise suppression. Thus, the polymer film was found to possess high transparency throughout the visible light spectrum and even into near IR and near UV regions, virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Impact of small electric and magnetic fields on the polymer was studied.
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) is a conductive polymer without a high boiling solvent (HBS), that is formed by electropolymerizing 3,4-ethylenedioxythiophene in a solution of poly(styrenesulfonate) (PSS). PEDOT is doped with positive ions and PSS with negative ions. It has the following properties that make it a viable polymer in organic electronics.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of the 12 Principles of Green Chemistry. This product is used in energy conversion and storage, thus has been enhanced for energy efficiency. Click here for more information.

Application

PEDOT:PSS can be used as an electrode material with high mobility for charge carriers. It can be used for a wide range of energy based applications such as organic photovoltaics (OPV), perovskite solar cells (DSSCs), organic light emitting diodes (OLEDs) and other biomedical sensors.
Used to prepare highly transparent conductive coating formulations. Primary and secondary nucleation by introducing PEDOT:PSS in a hydrogel was studied.
Virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Conductive polymer blend.

Legal Information

Product of Agfa-Gevaert N.V.
Orgacon is a trademark of Agfa-Gevaert N.V.

Pictograms

Corrosion

Signal Word

Danger

Hazard Statements

Hazard Classifications

Eye Dam. 1 - Skin Corr. 1B

Storage Class Code

8B - Non-combustible corrosive hazardous materials

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Hybrid photovoltaic devices from regioregular polythiophene and ZnO nanoparticles composites
Das NC and Sokol PE
Renewable Energy, 35(12), 2683-2688 (2010)
Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue
Feig VR, et al.
Nature Communications, 9(1), 2740-2740 (2018)
Harkema, S. et al.
Proc. SPIE: Int. Soc. Opt. Eng., 7415, 74150T-741501 (2009)
High-resolution electrohydrodynamic jet printing of small-molecule organic light-emitting diodes
Kim K, et al.
Nanoscale, 7(32), 13410-13415 (2015)
Perovskite solar cells: influence of hole transporting materials on power conversion efficiency
Ameen S, et al.
ChemSusChem, 9(1), 10-27 (2016)

Articles

A detailed article on conducting polymer materials for flexible organic photovoltaics (OPVs) applications.

In the field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), improved organic conducting and semiconducting materials are needed. The progress in two fields is reviewed in this article.

In the field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), improved organic conducting and semiconducting materials are needed. The progress in two fields is reviewed in this article.

In the field of organic printable electronics, such as OLEDs and organic photovoltaics (OPVs), improved organic conducting and semiconducting materials are needed. The progress in two fields is reviewed in this article.

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service