Skip to Content
Merck
  • Ozone artifacts and carbonyl measurements using Tenax GR, Tenax TA, Carbopack B, and Carbopack X adsorbents.

Ozone artifacts and carbonyl measurements using Tenax GR, Tenax TA, Carbopack B, and Carbopack X adsorbents.

Journal of the Air & Waste Management Association (1995) (2006-11-23)
Jae Hwan Lee, Stuart A Batterman, Chunrong Jia, Sergei Chernyak
ABSTRACT

Four popular thermally desorbable adsorbents used for air sampling (Tenax TA, Tenax GR, Carbopack B, and Carbopack X) are examined for the potential to form artifacts with ozone (O3) at environmental concentrations. The performance of these adsorbents for the ketone and aldehyde species identified as O3-adsorbent artifacts was also characterized, including recovery, linearity, and method detection limits (MDLs). Using gas chromatography/mass spectrometry, 13 different artifacts were identified and confirmed for both Tenax TA and Tenax GR, 9 for Carbopack B, but none for Carbopack X. Several O3 artifacts not reported previously were identified, including: pentanal, 3-hexanone, 2-hexanone, hexanal, 3-heptanone, and heptanal with Tenax TA; pentanal, 3-hexanone, 2-hexanone, hexanal, and 3-heptanone on Tenax GR; and 1-octene and 1-nonene with Carbopack B. Levels of straight-chain aldehyde artifacts rapidly diminished after a few cycles of adsorbent conditioning/O3 exposure, and concentrations could be predicted using a first-order model. Phenyl-substituted carbonyl artifacts (benzaldehyde and acetophenone) persisted on Tenax TA and GR even after 10 O3 exposure-conditioning cycles. O3 breakthrough through the adsorbent bed was most rapid in adsorbents that yielded the highest levels of artifacts. Overall, artifact composition and concentration are shown to depend on O3 concentration and dose, conditioning method, and adsorbent type and age. Calibrations showed good linearity, and most compounds had reasonable recoveries, for example, 90 +/- 15% for Tenax TA, 97 +/- 23% for Tenax GR, 101 +/- 24% for Carbopack B, and 79 +/- 25% (91 +/- 9% for n-aldehydes) for Carbopack X. Benzeneacetaldehyde recovery was notably poorer (22-63% across the four adsorbents). MDLs for several compounds were relatively high, up to 5 ng. By accounting for both artifact formation and method performance, this work helps to identify which carbonyl compounds can be measured using thermally desorbable adsorbents and which may be prone to bias because of the formation of O3-adsorbent artifacts.

MATERIALS
Product Number
Brand
Product Description

Supelco
Carbopack Adsorbent, matrix Carbopack X, 60-80 mesh, bottle of 10 g
Supelco
Carbopack Adsorbent, matrix Carbopack X, 40-60 mesh, bottle of 10 g
Supelco
Carbopack Adsorbent, matrix Carbopack X, 120-400 mesh, bottle of 50 g
Supelco
Tenax® Porous Polymer Adsorbent, matrix Tenax TA, 80-100 mesh, bottle of 10 g
Supelco
Carbopack Adsorbent, matrix Carbopack C, 80-100 mesh, bottle of 10 g
Supelco
Carbopack B, glass TD tube, fritted, O.D. × L 1/4 in. × 3 1/2 in., preconditioned, pkg of 10 ea
Supelco
FLM Carbopack X Deactivated Stainless Steel TD Tube, preconditioned, pkg of 10 tubes, O.D. × L 1/4 in. (6.35 mm) × 3 1/2 in. (89 mm)
Supelco
Carbopack B, glass TD tube, fritted, O.D. × L 1/4 in. × 3 1/2 in., unconditioned, pkg of 10 ea, matrix Carbopack
Supelco
Carbopack B, stainless steel TD tube, O.D. × L 1/4 × 3 1/2, unconditioned, pkg of 10 ea
Supelco
Tenax® Porous Polymer Adsorbent, matrix Tenax GR, 20-35 mesh, bottle of 500 g
Supelco
Carbopack B, O.D. × L 1/4 in. × 3 1/2 in., glass TD tube, fritted, Sealed with Brass Endcaps, preconditioned, pkg of 10 ea
Supelco
Carbopack X, glass TD tube, fritted, O.D. × L 1/4 in. × 3 1/2 in., preconditioned, pkg of 10 ea
Supelco
Carbopack Adsorbent, matrix Carbopack B, 60-80 mesh, bottle of 10 g