Skip to Content
Merck
  • Creatine loading elevates the intracellular phosphorylation potential and alters adaptive responses of rat fast-twitch muscle to chronic low-frequency stimulation.

Creatine loading elevates the intracellular phosphorylation potential and alters adaptive responses of rat fast-twitch muscle to chronic low-frequency stimulation.

Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme (2015-06-04)
Charles T Putman, Maria Gallo, Karen J B Martins, Ian M MacLean, Michelle J Jendral, Tessa Gordon, Daniel G Syrotuik, Walter T Dixon
ABSTRACT

This study tested the hypothesis that elevating the intracellular phosphorylation potential (IPP = [ATP]/[ADP]free) within rat fast-twitch tibialis anterior muscles by creatine (Cr) loading would prevent fast-to-slow fibre transitions induced by chronic low-frequency electrical stimulation (CLFS, 10 Hz, 12 h/day). Creatine-control and creatine-CLFS groups drank a solution of 1% Cr + 5% dextrose, ad libitum, for 10 days before and during 10 days of CLFS; dextrose-control and dextrose-CLFS groups drank 5% dextrose. Cr loading increased total Cr (P < 0.025), phosphocreatine (PCr) (P < 0.003), and the IPP (P < 0.0008) by 34%, 45%, and 64%, respectively. PCr and IPP were 46% (P < 0.002) and 76% (P < 0.02) greater in creatine-CLFS than in dextrose-CLFS. Higher IPP was confirmed by a 58% reduction in phospho-AMP-activated protein kinase α (Thr172) (P < 0.006). In dextrose-CLFS, myosin heavy chain (MyHC) I and IIa transcripts increased 32- and 38-fold (P < 0.006), respectively, whereas MyHC-IIb mRNA decreased by 75% (P < 0.03); the corresponding MyHC-I and MyHC-IIa protein contents increased by 2.0- (P < 0.03) and 2.7-fold (P < 0.05), respectively, and MyHC-IIb decreased by 30% (P < 0.03). In contrast, within creatine-CLFS, MyHC-I and MyHC-IIa mRNA were unchanged and MyHC-IIb mRNA decreased by 75% (P < 0.003); the corresponding MyHC isoform contents were not altered. Oxidative reference enzymes were similarly elevated (P < 0.01) in dextrose-CLFS and creatine-CLFS, but reciprocal reductions in glycolytic reference enzymes occurred only in dextrose-CLFS (P < 0.02). Preservation of the glycolytic potential and greater SERCA2 and parvalbumin contents in creatine-CLFS coincided with prolonged time to peak tension and half-rise time (P < 0.01). These results highlight the IPP as an important physiological regulator of muscle fibre plasticity and demonstrate that training-induced changes typically associated with improvements in muscular endurance or increased power output are not mutually exclusive in Cr-loaded muscles.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
D-(+)-Glucose, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Sigma-Aldrich
Picric acid solution, 1.3% in H2O (saturated)
Sigma-Aldrich
D-Glucose-12C6, 16O6, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
D-(+)-Glucose, ACS reagent
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC), BioXtra
Sigma-Aldrich
D-(+)-Glucose, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-Glucose, ≥99.5% (GC)
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
D-(+)-Glucose, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
D-(+)-Glucose, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
Sodium hydroxide solution, 0.1 N
Sigma-Aldrich
Sodium hydroxide, AR, pellets, ≥98.5%
Sigma-Aldrich
Sodium hydroxide, LR, flakes, ≥96%
Sigma-Aldrich
D-(+)-Glucose, Vetec, reagent grade, ≥99.5% (HPLC)
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
Dextrose, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
Picric acid, moistened with water, ≥98%