Skip to Content
Merck
  • Evaluation of a Novel Tc-99m Labelled Vitamin B12 Derivative for Targeting Escherichia coli and Staphylococcus aureus In Vitro and in an Experimental Foreign-Body Infection Model.

Evaluation of a Novel Tc-99m Labelled Vitamin B12 Derivative for Targeting Escherichia coli and Staphylococcus aureus In Vitro and in an Experimental Foreign-Body Infection Model.

Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging (2015-04-11)
Daniela Baldoni, Robert Waibel, Peter Bläuenstein, Filippo Galli, Violetta Iodice, Alberto Signore, Roger Schibli, Andrej Trampuz
ABSTRACT

Vitamin B12 (cyanocobalamin, Cbl) is accumulated by rapidly replicating prokaryotic and eukaryotic cells. We investigated the potential of a Tc-99m labelled Cbl derivative ([(99m)Tc]PAMA(4)-Cbl) for targeting infections caused by Escherichia coli and Staphylococcus aureus. In vitro binding assays were followed by biodistribution studies in a mouse model of foreign body infection. E. coli (ATCC 25922) and S. aureus (ATCC 43335) were used as test strains. [(57)Co]Cbl, [(67)Ga]citrate and [(99m)Tc]DTPA served as reference compounds. The in vitro competitive binding of [(57)Co]Cbl or [(99m)Tc]PAMA(4)-Cbl, and unlabeled Cbl, to viable or killed bacteria, was evaluated at 37 and 4 °C. A cage mouse model of infection was used for biodistribution of intravenous [(57)Co]Cbl and [(99m)Tc]PAMA(4)-Cbl in cage and dissected tissues of infected and non-infected mice. Maximum binding (mean ± SD) of [(57)Co]Cbl to viable E. coli was 81.7 ± 2.6 % and to S. aureus 34.0 ± 6.7 %, at 37 °C; no binding occurred to heat-killed bacteria. Binding to both test strains was displaced by 100- to 1000-fold excess of unlabeled Cbl. The in vitro binding of [(99m)Tc]PAMA(4)-Cbl was 100-fold and 3-fold lower than the one of [(57)Co]Cbl for E. coli and S. aureus, respectively. In vivo, [(99m)Tc]PAMA(4)-Cbl showed peak percentage of injected dose (% ID) values between 1.33 and 2.3, at 30 min post-injection (p.i.). Significantly higher retention occurred in cage fluids infected with S. aureus at 4 h and with E. coli at 8 h p.i. than in non-infected animals. Accumulation into infected cages was also higher than the one of [(99m)Tc]DTPA, which showed similar biodistribution in infected and sterile mice. [(57)Co]Cbl gradually accumulated in cages with peaks % ID between 3.58 and 4.83 % achieved from 24 to 48 h. Discrimination for infection occurred only in E. coli-infected mice, at 72 h p.i. [(67)Ga]citrate, which showed a gradual accumulation into cage fluids during 12 h, was discriminative for infection from 48 to 72 h p.i. (P < 0.05). Cbl displayed rapid and specific in vitro binding to test strains. [(99m)Tc]PAMA(4)-Cbl was rapidly cleared from most tissues and discriminated between sterile and infected cages, being a promising candidate for imaging infections in humans.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Diethylenetriaminepentaacetic acid, ≥99% (titration)
Sigma-Aldrich
Diethylenetriaminepentaacetic acid, ≥98% (titration)
Sigma-Aldrich
Vitamin B12, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥98%
Sigma-Aldrich
Vitamin B12, ≥98%
Sigma-Aldrich
Vitamin B12, Vetec, reagent grade, ≥98%
Sigma-Aldrich
Cyanocobalamin, meets USP testing specifications
Supelco
Cyanocobalamin (B12), analytical standard