Skip to Content
Merck
  • Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: a murine model.

Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: a murine model.

PloS one (2014-05-24)
Ujjal Das, Krishnendu Manna, Mahuya Sinha, Sanjukta Datta, Dipesh Kr Das, Anindita Chakraborty, Mahua Ghosh, Krishna Das Saha, Sanjit Dey
ABSTRACT

Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Trichloroacetic acid, ACS reagent, for the determination of Fe in blood according to Heilmeyer, ≥99.5%
Supelco
Mettler-Toledo Calibration substance ME 18555, Benzoic acid, analytical standard, (for the calibration of the melting point system), traceable to primary standards (LGC)
Sigma-Aldrich
Trichloroacetic acid, BioXtra, ≥99.0%
Sigma-Aldrich
Trichloroacetic acid, suitable for electrophoresis, suitable for fixing solution (for IEF and PAGE gels), ≥99%
Sigma-Aldrich
Trichloroacetic acid, ACS reagent, ≥99.0%
Sigma-Aldrich
2-Thiobarbituric acid, ≥98%
Sigma-Aldrich
Trichloroacetic acid, ≥99.0% (titration)
Sigma-Aldrich
MISSION® esiRNA, targeting mouse Nfkb1
Sigma-Aldrich
Trichloroacetic acid, BioUltra, ≥99.5% (T)
Supelco
Melting point standard 121-123°C, analytical standard
Supelco
Benzoic acid, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Benzoic acid, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
trans-Ferulic acid, 99%
Supelco
Benzoic acid, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
Benzoic acid, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥99.9% (alkalimetric)
Sigma-Aldrich
Benzoic acid, meets analytical specification of Ph. Eur., BP, USP, FCC, E210, 99.5-100.5% (alkalimetric)
Sigma-Aldrich
Benzoic acid, ACS reagent, ≥99.5%
Sigma-Aldrich
Benzoic acid, natural, ≥99.5%, FCC, FG
Sigma-Aldrich
Benzoic acid, ≥99.5%, FCC, FG
Sigma-Aldrich
Benzoic acid, ReagentPlus®, 99%
Sigma-Aldrich
Trichloroacetic acid solution, 6.1 N
Sigma-Aldrich
trans-Ferulic acid, ≥99%
Sigma-Aldrich
Benzoic acid, purified by sublimation, ≥99%
Supelco
trans-Ferulic acid, matrix substance for MALDI-MS, ≥99.0% (HPLC)
Ferulic acid, European Pharmacopoeia (EP) Reference Standard
Supelco
Benzoic acid, Standard for quantitative NMR, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Supelco
trans-Ferulic acid, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland