Skip to Content
Merck
  • Rational strategy for shaped nanomaterial synthesis in reverse micelle reactors.

Rational strategy for shaped nanomaterial synthesis in reverse micelle reactors.

Nature communications (2014-05-16)
Zengyan Wei, Hiroshi Matsui
ABSTRACT

The shape-controlled synthesis of nanoparticles was established in single-phase solutions by controlling growth directions of crystalline facets on seed nanocrystals kinetically; however, it was difficult to rationally predict and design nanoparticle shapes. Here we introduce a methodology to fabricate nanoparticles in smaller sizes by evolving shapes thermodynamically. This strategy enables a more rational approach to fabricate shaped nanoparticles by etching specific positions of atoms on facets of seed nanocrystals in reverse micelle reactors where the surface energy gradient induces desorption of atoms on specific locations on the seed surfaces. From seeds of 12-nm palladium nanocubes, the shape is evolved to concave nanocubes and finally hollow nanocages in the size ~10 nm by etching the centre of {200} facets. The high surface area-to-volume ratio and the exposure of a large number of palladium atoms on ledge and kink sites of hollow nanocages are advantageous to enhance catalytic activity and recyclability.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-Hydroxybenzotriazole hydrate, ≥97.0% dry basis (T)
Supelco
Chloroform, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Chloroform, anhydrous, contains amylenes as stabilizer, ≥99%
Sigma-Aldrich
Sodium tetrachloropalladate(II), ≥99.99% trace metals basis
Sigma-Aldrich
L-Ascorbic acid, BioUltra, ≥99.5% (RT)
Sigma-Aldrich
Sodium hydroxide, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Chloroform, puriss. p.a., ACS reagent, ≥99.8% (chloroform + ethanol, GC)
Supelco
Sodium hydroxide solution, 49-51% in water, eluent for IC
Sigma-Aldrich
Iodobenzene, 98%
Sigma-Aldrich
1-Octanol, anhydrous, ≥99%
Sigma-Aldrich
1-Hydroxybenzotriazole hydrate, wetted with not less than 14 wt. % water, 98% dry basis
Sigma-Aldrich
Chloroform, ACS reagent, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Sodium borohydride solution, 2.0 M in triethylene glycol dimethyl ether
Sigma-Aldrich
L-Ascorbic acid, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L-Ascorbic acid, reagent grade, crystalline
Sigma-Aldrich
Sodium hydroxide solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Chloroform, ≥99%, PCR Reagent, contains amylenes as stabilizer
Sigma-Aldrich
N,N-Dimethylformamide, for molecular biology, ≥99%
Sigma-Aldrich
Methanol, low water for titration
Sigma-Aldrich
VenPure® SF, powder
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
1-Hydroxybenzotriazole hydrate, wetted with not less than 20 wt. % water, 97% dry basis
Supelco
Sodium hydroxide concentrate, 0.1 M NaOH in water (0.1N), Eluent concentrate for IC
Sigma-Aldrich
Sodium hydroxide solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Tetrahydrofuran, suitable for HPLC, ≥99.9%, inhibitor-free
Sigma-Aldrich
Tetrahydrofuran, anhydrous, contains 250 ppm BHT as inhibitor, ≥99.9%
USP
Cetrimonium bromide, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Dimethyl sulfoxide-d6, "Special HOH", ≥99.9 atom % D