Skip to Content
Merck
  • Titanium oxide modeling and design for innovative biomedical surfaces: a concise review.

Titanium oxide modeling and design for innovative biomedical surfaces: a concise review.

The International journal of artificial organs (2012-10-16)
Luigi De Nardo, Giuseppina Raffaini, Edward Ebramzadeh, Fabio Ganazzoli
ABSTRACT

The natural oxide layer on implantable alloys insulates the reactive underlying metal from the physiological environment, preventing substrate corrosion and device failure. This type of oxide film has had a major role in the minimization of functional failure and toxic response after implantation in the first generation biomaterials. Recent advances in theoretical, computational, and experimental surface engineering tools provide the foundation for the design of novel devices with improved performances in this regard based on conventional implantable metal alloys. An increasing number of technologies provide the possibility of tailoring chemico-physical and morphological parameters of the surface oxide layers. For some applications, such as dental implants, surface modifications result in substantial innovation and economic success. However, the selection of novel surfaces is in general based on experimental studies and has a limited theoretical and computational foundation. In this review, we offer a perspective analysis of the correlation between theoretical studies and chemical surface modification technologies, with a special emphasis on titanium oxide on Ti alloys. Theoretical approaches for the surface behavior at an atomistic level of description are presented, together with some adsorption studies on a rutile surface. The role of chemical and electrochemical surface modification technologies in modifying the TiO(2) structure, morphology, and chemistry to tailor in vivo biological response is then briefly reviewed. Finally, we discuss the role of surface modeling as a powerful design tool for a new generation of implantable devices in which metal oxide surface can be tuned to yield specific biological response.

MATERIALS
Product Number
Brand
Product Description

Titanium, IRMM®, certified reference material, 0.5 mm foil
Sigma-Aldrich
Titanium, foil, thickness 0.127 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 1.0 mm, 99.99% trace metals basis
Titanium, IRMM®, certified reference material, 0.5 mm wire
Sigma-Aldrich
Titanium, foil, thickness 2.0 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.81 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, wire, diam. 0.25 mm, 99.7% trace metals basis
Sigma-Aldrich
Titanium, 5-10 mm, ≥99.99% trace metals basis (purity exclusive of Na and K content)
Sigma-Aldrich
Titanium, foil, thickness 0.025 mm, 99.98% trace metals basis
Titanium, rod, 200mm, diameter 2mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 10mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 16mm, as drawn, 99.99+%
Titanium, microfoil, disks, 10mm, thinness 1.0μm, specific density 429μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, rod, 490mm, diameter 2mm, annealed, 99.6+%
Titanium, tube, 1220mm, outside diameter 2.03mm, inside diameter 1.55mm, wall thickness 0.24mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 6.35mm, inside diameter 4.57mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, rod, 25mm, diameter 16mm, as drawn, 99.99+%
Titanium, rod, 500mm, diameter 1.5mm, annealed, 99.6+%
Titanium, rod, 100mm, diameter 6mm, annealed, 99.6+%
Titanium, tube, 1000mm, outside diameter 25.4mm, inside diameter 23.62mm, wall thickness 0.89mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 5mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 1.6mm, inside diameter 1.2mm, wall thickness 0.2mm, hard, 99.6+%
Titanium, rod, 200mm, diameter 4mm, annealed, 99.6+%
Titanium, rod, 1000mm, diameter 1.5mm, annealed, 99.6+%
Titanium, microfoil, disks, 25mm, thinness 0.25μm, specific density 112.6μg/cm2, permanent mylar 3.5μm support, 99.6+%
Titanium, tube, 100mm, outside diameter 2.03mm, inside diameter 1.63mm, wall thickness 0.2mm, annealed, 99.6+%
Titanium, rod, 500mm, diameter 6mm, annealed, 99.6+%
Titanium, rod, 200mm, diameter 2mm, as drawn, 99.99+%
Titanium, tube, 1000mm, outside diameter 9.5mm, inside diameter 8.2mm, wall thickness 0.65mm, annealed, 99.6+%
Titanium, tube, 100mm, outside diameter 10.3mm, inside diameter 8.7mm, wall thickness 0.8mm, annealed, 99.6+%