- Three-dimensional collagen regulates collagen gene expression by a mechanism that requires serine/threonine kinases and is independent of mechanical contraction.
Three-dimensional collagen regulates collagen gene expression by a mechanism that requires serine/threonine kinases and is independent of mechanical contraction.
Integrin alpha1beta1, one of the cellular collagen receptors, can participate in the regulation of collagen accumulation by acting as a negative feedback regulator. The molecular mechanism behind this phenomenon has been unknown. We have plated cells inside three-dimensional collagen and analyzed a set of chemical inhibitors for various signal transduction pathways. Only two wide-spectrum serine/threonine kinase inhibitors, H-7 and iso-H-7 could prevent the down-regulation of alpha1(I) collagen mRNA levels in cells exposed to three-dimensional collagen. In monolayer iso-H-7 slightly down-regulated collagen gene expression, indicating that inside collagen it affected integrin signaling rather than having a direct stimulatory effect on collagen mRNA levels. The effect of iso-H-7 was not dependent on its ability to inhibit protein kinases A, C, or G. H-7 and iso-H-7 could also inhibit collagen gel contraction, but this mechanism was independent of collagen gene regulation. Three-dimensional collagen could also up-regulate the mRNA levels of several matrix metalloproteinases (MMPs) but H-7 and iso-H-7 had no effect on the regulation of MMP genes. Our data indicate that three-dimensional collagenous matrix regulates distinct cellular signaling pathways and that collagen gene regulation is independent of the other effects of the matrix.