- [Establishment of in vitro culture, plant regeneration and genetic transformation of Camelina sativa].
[Establishment of in vitro culture, plant regeneration and genetic transformation of Camelina sativa].
TSitologiia i genetika (2013-07-05)
A I Emets, Iu N Boĭchuk, E N Shisha, D B Rakhmetov, Ia B Blium
PMID23821950
ABSTRACT
The results on in vitro culture establishment, plantlet regeneration and rooting of Camelina sativa cultivar sample Peremozhets and cultivar Mirazh are presented. Effective concentrations of sterilizing agents and duration of plant material treatment were estimated. Phytohormone ratio, sucrose concentration in nutrient medium that induce effective formation of C. sativa shoots and NAA concentration for plantlet rooting have been established. The method of Agrobacterium-mediated transformation of Camelina by using binary vector pGH217 carrying reporter beta-glucoronidase (gus) gene driven under 35S CaMV promoter and nos-terminator, and selective marker hpt gene conferring hygromycin-resistance in transgenic plant was elaborated.
MATERIALS
Product Number
Brand
Product Description
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-3AF, aqueous solution, ≥60,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type HP-2S, aqueous solution, ≥90,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type HP-2, aqueous solution, ≥100,000 units/mL
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-5, lyophilized powder, ≥400,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Helix pomatia, Type H-1, partially purified powder, ≥300,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from limpets (Patella vulgata), Type L-II, lyophilized powder, 1,000,000-3,000,000 units/g solid
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, aqueous glycerol solution, ≥5,000,000 units/g protein, pH 6.8 (biuret)
Sigma-Aldrich
β-Glucuronidase from Escherichia coli, >20,000,000 units/g protein, recombinant, expressed in E. coli, aqueous glycerol solution