Skip to Content
Merck
  • Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells enhance in vitro lymphangiogenesis via integrin α3-dependent uptake by lymphatic endothelial cells.

Laminin γ2-enriched extracellular vesicles of oral squamous cell carcinoma cells enhance in vitro lymphangiogenesis via integrin α3-dependent uptake by lymphatic endothelial cells.

International journal of cancer (2018-11-30)
Ssu-Han Wang, Gunn-Guang Liou, Szu-Heng Liu, Jeffrey S Chang, Jenn-Ren Hsiao, Yi-Chen Yen, Yu-Lin Chen, Wan-Ling Wu, Jang-Yang Chang, Ya-Wen Chen
ABSTRACT

Oral squamous cell carcinoma (OSCC) LN1-1 cells previously showed greater capacities for lymphangiogenesis and lymph node metastasis compared to their parental OEC-M1 cells, in addition to an ability to enhance the migration and tube formation of lymphatic endothelial cells (LECs). Purified by a series of differential centrifugations and characterized using electron microscopy, dynamic light scattering and western blot, LN1-1 cell-derived extracellular vesicles (LN1-1 EVs) were shown to promote LEC migration, tube formation and uptake by LECs more effectively than did OEC-M1 cell-derived EVs (OEC-M1 EVs). Using stable isotope labeling with amino acids in cell culture/liquid chromatography-tandem mass spectrometry-based proteomic platform, the laminin-332 proteins, including laminin α3, β3 and γ2, were validated as highly expressed proteins in LN1-1 EVs. Clinically, a higher level of laminin-332 was detected in plasma EVs from OSCC patients with lymph node metastasis than in both healthy controls and OSCC patients without lymphatic metastasis, suggesting EV-borne laminin-332 as a novel and noninvasive biomarker for the detection of lymph node metastasis in OSCC. The knockdown of laminin γ2 and inhibition by anti-laminin-332 neutralizing antibodies impaired LN1-1 EV-mediated LEC migration, tube formation and uptake by LECs. Importantly, laminin γ2-deficient EVs showed a reduced ability to drain into lymph nodes in comparison with the control EVs. In addition, the laminin 332/γ2-mediated EV uptake was dependent on integrin α3 but not β1, β4 or α6. Collectively, the uptake of laminin γ2-enriched EVs by LECs enhanced in vitro lymphangiogenesis and EV-borne laminin-332 is thus a viable biomarker for OSCC.