Skip to Content
Merck
  • A microRNA checkpoint for Ca2+ signaling and overload in acute pancreatitis.

A microRNA checkpoint for Ca2+ signaling and overload in acute pancreatitis.

Molecular therapy : the journal of the American Society of Gene Therapy (2022-01-26)
Wenya Du, Geng Liu, Na Shi, Dongmei Tang, Pawel E Ferdek, Monika A Jakubowska, Shiyu Liu, Xinyue Zhu, Jiayu Zhang, Linbo Yao, Xiongbo Sang, Sailan Zou, Tingting Liu, Rajarshi Mukherjee, David N Criddle, Xiaofeng Zheng, Qing Xia, Per-Olof Berggren, Wendong Huang, Robert Sutton, Yan Tian, Wei Huang, Xianghui Fu
ABSTRACT

Acute pancreatitis (AP) is a common digestive disease without specific treatment, and its pathogenesis features multiple deleterious amplification loops dependent on translation, triggered by cytosolic Ca2+ ([Ca2+]i) overload; however, the underlying mechanisms in Ca2+ overload of AP remains incompletely understood. Here we show that microRNA-26a (miR-26a) inhibits pancreatic acinar cell (PAC) store-operated Ca2+ entry (SOCE) channel expression, Ca2+ overload, and AP. We find that major SOCE channels are post-transcriptionally induced in PACs during AP, whereas miR-26a expression is reduced in experimental and human AP and correlated with AP severity. Mechanistically, miR-26a simultaneously targets Trpc3 and Trpc6 SOCE channels and attenuates physiological oscillations and pathological elevations of [Ca2+]i in PACs. MiR-26a deficiency increases SOCE channel expression and [Ca2+]i overload, and significantly exacerbates AP. Conversely, global or PAC-specific overexpression of miR-26a in mice ameliorates pancreatic edema, neutrophil infiltration, acinar necrosis, and systemic inflammation, accompanied with remarkable improvements on pathological determinants related with [Ca2+]i overload. Moreover, pancreatic or systemic administration of an miR-26a mimic to mice significantly alleviates experimental AP. These findings reveal a previously unknown mechanism underlying AP pathogenesis, establish a critical role for miR-26a in Ca2+ signaling in the exocrine pancreas, and identify a potential target for the treatment of AP.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Pyr3, ≥98% (HPLC)
Sigma-Aldrich
Tamoxifen, ≥99%