Saltar al contenido
Merck

Colostrum hexasaccharide, a novel Staphylococcus aureus quorum-sensing inhibitor.

Antimicrobial agents and chemotherapy (2015-02-04)
A Srivastava, B N Singh, D Deepak, A K S Rawat, B R Singh
RESUMEN

The discovery of quorum-sensing (QS) systems regulating antibiotic resistance and virulence factors (VFs) has afforded a novel opportunity to prevent bacterial pathogenicity. Dietary molecules have been demonstrated to attenuate QS circuits of bacteria. But, to our knowledge, no study exploring the potential of colostrum hexasaccharide (CHS) in regulating QS systems has been published. In this study, we analyzed CHS for inhibiting QS signaling in Staphylococcus aureus. We isolated and characterized CHS from mare colostrum by high-performance thin-layer chromatography (HPTLC), reverse-phase high-performance liquid chromatography evaporative light-scattering detection (RP-HPLC-ELSD), (1)H and (13)C nuclear magnetic resonance (NMR), and electrospray ionization mass spectrometry (ESI-MS). Antibiofilm activity of CHS against S. aureus and its possible interference with bacterial QS systems were determined. The inhibition and eradication potentials of the biofilms were studied by microscopic analyses and quantified by 96-well-microtiter-plate assays. Also, the ability of CHS to interfere in bacterial QS by degrading acyl-homoserine lactones (AHLs), one of the most studied signal molecules for Gram-negative bacteria, was evaluated. The results revealed that CHS exhibited promising inhibitory activities against QS-regulated secretion of VFs, including spreading ability, hemolysis, protease, and lipase activities, when applied at a rate of 5 mg/ml. The results of biofilm experiments indicated that CHS is a strong inhibitor of biofilm formation and also has the ability to eradicate it. The potential of CHS to interfere with bacterial QS systems was also examined by degradation of AHLs. Furthermore, it was documented that CHS decreased antibiotic resistance in S. aureus. The results thus give a lead that mare colostrum can be a promising source for isolating a next-generation antibacterial.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Hidróxido de sodio solution, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
Ácido clorhídrico solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Hidróxido de sodio solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Ácido clorhídrico, 36.5-38.0%, BioReagent, for molecular biology
Supelco
Ácido clorhídrico solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Alcohol etílico puro, 200 proof, anhydrous, ≥99.5%
Sigma-Aldrich
Hydrogen chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Alcohol etílico puro, 190 proof, ACS spectrophotometric grade, 95.0%
Sigma-Aldrich
Hidróxido de sodio, BioUltra, for luminescence, ≥98.0% (T), pellets
Sigma-Aldrich
Ácido clorhídrico solution, ~6 M in H2O, for amino acid analysis
Sigma-Aldrich
Acetato de etilo, anhydrous, 99.8%
Sigma-Aldrich
Tetramethylsilane, ≥99.0% (GC)
Sigma-Aldrich
Cloruro de hidrógeno solution, 3 M in cyclopentyl methyl ether (CPME)
Sigma-Aldrich
Ácido clorhídrico solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Acetato de etilo, ≥99%, FCC, FG
Sigma-Aldrich
Acetato de etilo
Sigma-Aldrich
Hidróxido de sodio, ultra dry, powder or crystals, 99.99% trace metals basis
Sigma-Aldrich
Cholesteryl hemisuccinate tris salt, anionic detergent
Supelco
Ethanol solution, 10 % (v/v) in H2O, analytical standard
Sigma-Aldrich
Acetato de etilo, natural, ≥99%, FCC, FG
Sigma-Aldrich
Alcohol etílico puro, 190 proof, meets USP testing specifications
Sigma-Aldrich
Acetato de etilo
Sigma-Aldrich
Sodium hydroxide-16O solution, 20 wt. % in H216O, 99.9 atom % 16O
Sigma-Aldrich
3-Ethyl-2,4-pentanedione, mixture of tautomers, 98%
Sigma-Aldrich
Tetramethylsilane, electronic grade, ≥99.99% trace metals basis
Sigma-Aldrich
Acetato de etilo, ReagentPlus®, ≥99.8%
Sigma-Aldrich
Acetato de etilo, ACS reagent, ≥99.5%