Saltar al contenido
Merck
  • Strontium exerts dual effects on calcium phosphate cement: Accelerating the degradation and enhancing the osteoconductivity both in vitro and in vivo.

Strontium exerts dual effects on calcium phosphate cement: Accelerating the degradation and enhancing the osteoconductivity both in vitro and in vivo.

Journal of biomedical materials research. Part A (2014-08-05)
Guan-Ming Kuang, W P Yau, Jun Wu, Kelvin W K Yeung, Haobo Pan, W M Lam, W W Lu, K Y Chiu
RESUMEN

Calcium phosphate cements (CPCs) have long been used as osteoconductive bone substitutes in the treatment of bone defects. However, the degradation rate of CPC is typically too slow to match the new bone growth rate. It is known that strontium increases the solubility of hydroxyapatite as well as exerts both anabolic and anticatabolic effects on bone. Therefore, we hypothesized that the incorporation of strontium would accelerate the degradation rate and enhance the osteoconductivity of CPC. In this study, Three groups, CPC (0% Sr-CPC), 5% Sr-CPC, and 10% Sr-CPC, were prepared, with the total molar ratio for Sr/(Sr+Ca) in the cement powder phase being 0, 5, and 10%, respectively. In the immersion test, less residual weight was observed in both 5% Sr-CPC and 10% Sr-CPC groups than CPC group. In addition, a higher osteoblastic cell proliferation rate and alkaline phosphatase activity were obtained in the strontium groups. In a rat femur bone defect model comparing CPC with 10% Sr-CPC, at 2 weeks postoperation, early endochondral ossification was found in the 10% Sr-CPC group, whereas only fibrous tissue was observed in control group; at 4-16 weeks postoperation, progressive osteoconduction toward the cement was observed in both groups. At 32 weeks, a higher peri-cement bone area and reduced cement area were noted in the 10% Sr-CPC group. In conclusion, in the 10% Sr-CPC group, strontium exerts dual effects on CPC: accelerating degradation rate and enhancing osteoconductivity, as shown here both in vitro and in vivo.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido cítrico, meets analytical specification of Ph. Eur., BP, USP, E330, anhydrous, 99.5-100.5% (based on anhydrous substance)
Sigma-Aldrich
Ácido cítrico, ACS reagent, ≥99.5%
Sigma-Aldrich
Ácido cítrico, 99%
Sigma-Aldrich
Ácido cítrico, ≥99.5%, FCC, FG
Sigma-Aldrich
Ácido cítrico, anhydrous, suitable for cell culture, suitable for plant cell culture
USP
Ácido cítrico, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ácido cítrico, BioUltra, anhydrous, ≥99.5% (T)
Sigma-Aldrich
Nitrogen, ≥99.998%
Supelco
Ácido cítrico, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Ácido cítrico, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.5%
Sigma-Aldrich
2-Hydroxybutyric acid sodium salt, 97%
Sigma-Aldrich
Edelfosine, ≥95% (HPLC)
Supelco
Ácido cítrico, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Ácido cítrico, anhydrous, European Pharmacopoeia (EP) Reference Standard