Saltar al contenido
Merck
  • Immunization with malondialdehyde-modified low-density lipoprotein (LDL) reduces atherosclerosis in LDL receptor-deficient mice challenged with Porphyromonas gingivalis.

Immunization with malondialdehyde-modified low-density lipoprotein (LDL) reduces atherosclerosis in LDL receptor-deficient mice challenged with Porphyromonas gingivalis.

Innate immunity (2014-08-20)
S Pauliina Turunen, Outi Kummu, Chunguang Wang, Kirsi Harila, Riikka Mattila, Marjo Sahlman, Pirkko J Pussinen, Sohvi Hörkkö
RESUMEN

Periodontal infections increase the risk of atherosclerotic vascular disease via partly unresolved mechanisms. Of the natural IgM Abs that recognize molecular mimicry on bacterial epitopes and modified lipid and protein structures, IgM directed against oxidized low-density lipoprotein (LDL) is associated with atheroprotective properties. Here, the effect of natural immune responses to malondialdehyde-modified LDL (MDA-LDL) in conferring protection against atherosclerosis, which was accelerated by the major periodontopathogen Porphyromonas gingivalis, was investigated. LDL receptor-deficient (LDLR(-/-)) mice were immunized with mouse MDA-LDL without adjuvant before topical application challenge with live P. gingivalis. Atherosclerosis was analyzed after a high-fat diet, and plasma IgG and IgM Ab levels were measured throughout the study, and the secretion of IL-5, IL-10 and IFN-γ in splenocytes stimulated with MDA-LDL was determined. LDLR(-/-) mice immunized with MDA-LDL had elevated IgM and IgG levels to MDA-LDL compared with saline-treated controls. MDA-LDL immunization diminished aortic lipid depositions after challenge with P. gingivalis compared with mice receiving only P. gingivalis challenge. Immunization of LDLR(-/-) mice with homologous MDA-LDL stimulated the production of IL-5, implicating general activation of B-1 cells. Immune responses to MDA-LDL protected from the P. gingivalis-accelerated atherosclerosis. Thus, the linkage between bacterial infectious burden and atherogenesis is suggested to be modulated via natural IgM directed against cross-reactive epitopes on bacteria and modified LDL.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture
Sigma-Aldrich
Colesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Ácido picrilsulfónico solution, 5 % (w/v) in H2O, BioReagent, suitable for determination of primary amines
Sigma-Aldrich
HEPES, BioUltra, for molecular biology, ≥99.5% (T)
Sigma-Aldrich
Colesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
HEPES buffer solution, 1 M in H2O
SAFC
HEPES
Sigma-Aldrich
Colesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
4,4′-Diaminodiphenylmethane, ≥97.0% (GC)
Sigma-Aldrich
1,1,3,3-Tetramethoxypropane, 99%
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
SAFC
HEPES
Sigma-Aldrich
SyntheChol® NS0 Supplement, 500 ×, synthetic cholesterol, animal component-free, aqueous solution, sterile-filtered, suitable for cell culture
SAFC
Colesterol, derivado vegetal, SyntheChol®
Supelco
Cholesterol solution, certified reference material, 10 mg/mL in chloroform
Sigma-Aldrich
HEPES, BioXtra, pH 5.0-6.5 (1 M in H2O), ≥99.5% (titration)
Supelco
Colesterol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
SAFC
Colesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Supelco
4,4′-Diaminodiphenylmethane, analytical standard
Sigma-Aldrich
Anti-Mouse IgM (μ-chain specific)–Alkaline Phosphatase antibody produced in goat, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-Mouse IgG (γ-chain specific) antibody produced in goat, affinity isolated antibody, lyophilized powder