Saltar al contenido
Merck
  • Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.

Endogenous release of 5-HT modulates the plateau phase of NMDA-induced membrane potential oscillations in lamprey spinal neurons.

Journal of neurophysiology (2014-04-18)
Di Wang, Sten Grillner, Peter Wallén
RESUMEN

The lamprey central nervous system has been used extensively as a model system for investigating the networks underlying vertebrate motor behavior. The locomotor networks can be activated by application of glutamate agonists, such as N-methyl-D-aspartic acid (NMDA), to the isolated spinal cord preparation. Many spinal neurons are capable of generating pacemaker-like membrane potential oscillations upon activation of NMDA receptors. These oscillations rely on the voltage-dependent properties of NMDA receptors in interaction with voltage-dependent potassium and calcium-dependent potassium (K(Ca)) channels, as well as low voltage-activated calcium channels. Upon membrane depolarization, influx of calcium will activate K(Ca) channels, which in turn, will contribute to repolarization and termination of the depolarized phase. The appearance of the NMDA-induced oscillations varies markedly between spinal cord preparations; they may either have a pronounced, depolarized plateau phase or be characterized by a short-lasting depolarization lasting approximately 200-300 ms without a plateau. Both types of oscillations increase in frequency with increased concentrations of NMDA. Here, we characterize these two types of membrane potential oscillations and show that they depend on the level of endogenous release of 5-HT in the spinal cord preparations. In the lamprey, 5-HT acts to block voltage-dependent calcium channels and will thereby modulate the activity of K(Ca) channels. When 5-HT antagonists were administered, the plateau-like oscillations were converted to the second type of oscillations lacking a plateau phase. Conversely, plateau-like oscillations can be induced or prolonged by 5-HT agonists. These properties are most likely of significance for the modulatory action of 5-HT on the spinal networks for locomotion.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ethyl 3-aminobenzoate methanesulfonate, 98%
Supelco
Ethyl 3-aminobenzoate methanesulfonate salt, analytical standard