Saltar al contenido
Merck

Identification of manipulated variables for a glycosylation control strategy.

Biotechnology and bioengineering (2014-04-15)
Melissa M St Amand, Devesh Radhakrishnan, Anne S Robinson, Babatunde A Ogunnaike
RESUMEN

N-linked glycan distribution affects important end-use characteristics such as the bioactivity and efficacy of many therapeutic proteins, (including monoclonal antibodies), in vivo. Yet, obtaining desired glycan distributions consistently during batch-to-batch production can be challenging for biopharmaceutical manufacturers. While an appropriately implemented on-line glycosylation control strategy during production can help to ensure a consistent glycan distribution, to date no such strategies have been reported. Our goal is to develop and validate a comprehensive strategy for effective on-line control of glycosylation, the successful achievement of which requires first identifying appropriate manipulated variables that can be used to direct the glycan distribution to a desired state. While various culture conditions such as bioreactor process variables, media type, and media supplements have been shown to affect the glycan distribution, in this study we focus on the latter. Specifically, we implemented a statistically designed series of experiments to determine the significant main effects (as well as interaction effects) of media supplementation with manganese, galactose, ammonia and found that each had significant effects on certain glycans. We also include data indicating the glycosylation enzyme gene transcript levels as well as the intracellular nucleotide sugar concentrations in the presence of the media supplements to provide insight into the intracellular conditions that may be contributing to the changes in glycan distribution. The acquired experimental data sets were then used to identify which glycans can be controlled by the media supplements and to what degree. We determined that MnCl2 can be used as a manipulated variable to increase the relative abundance of M51 and decrease FA2 simultaneously, and galactose can be used as a manipulated variable to increase the relative abundance of FA2G1 and decrease FA2 and A2 simultaneously.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Ácido perclórico, ACS reagent, 70%
Sigma-Aldrich
Sacarosa, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
Sacarosa, BioUltra, for molecular biology, ≥99.5% (HPLC)
Supelco
Sacarosa, Pharmaceutical Secondary Standard; Certified Reference Material
USP
Sacarosa, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Ácido perclórico, 70%, 99.999% trace metals basis
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Ácido perclórico, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., 70.0-72.0%
Sigma-Aldrich
Ácido perclórico, ACS reagent, 60%
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Tetrabutylammonium hydrogensulfate, 97%
Sigma-Aldrich
Potassium phosphate tribasic, reagent grade, ≥98%
Sigma-Aldrich
Tetrabutylammonium bisulfate, puriss., ≥99.0% (T)
Sigma-Aldrich
Sacarosa, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Sacarosa, ACS reagent
Sigma-Aldrich
Sacarosa, puriss., meets analytical specification of Ph. Eur., BP, NF
Millipore
Sacarosa, suitable for microbiology, ACS reagent, ≥99.0%
Supelco
Tetrabutylammonium bisulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Sacarosa, meets USP testing specifications
Sigma-Aldrich
Ácido perclórico, puriss. p.a., ACS reagent, packed in coated, shock- and leak-protected glass bottle, ≥60% (T)
Supelco
Sacarosa, analytical standard, for enzymatic assay kit SCA20
Sigma-Aldrich
Tetrabutylammonium hydrogensulfate, anhydrous, free-flowing, Redi-Dri, 97%
Supelco
Perchloric acid, 0.01 M HClO4 in water (0.01N), eluent for IC
Sigma-Aldrich
Tetrabutylammonium bisulfate solution, ~55% in H2O
Sacarosa, European Pharmacopoeia (EP) Reference Standard
Sigma-Aldrich
β-D-Allose, rare aldohexose sugar
Supelco
Tetrabutylammonium hydrogen sulfate solution, suitable for ion pair chromatography, LiChropur, concentrate, ampule