Saltar al contenido
Merck

The Park Grass Experiment and next-generation approaches: local adaptation of sweet vernal grass revisited.

Molecular ecology (2014-12-24)
Eric J B von Wettberg, Wendy Vance, Diane L Rowland
RESUMEN

Long-term ecological experiments provide unique opportunities to observe the effects of natural selection. The Park Grass Experiment at Rothamsted Experiment Station in Hertfordshire, UK, is the longest running ecological experiment that incorporates fertilization treatments and has been ongoing since 1856. In the 1970s, local adaptation was observed in the grass Anthoxanthum odoratum to the elevated soil aluminium levels of the fertilized plots. Gould et al. (2014) have utilized this system to reevaluate the extent of local adaptation, first documented nearly 45 years ago (Snaydon), and to use emerging molecular approaches to identify candidate genes for the adaptation. From their work, they identify several plausible candidate loci for aluminium tolerance. This work shows the power of long-term field-based trials in a scientific age concentrated on rapidly emerging molecular techniques often utilized in short, narrowly focused laboratory or controlled environment experiments. The current study clearly illustrates the benefits gained by combining these molecular approaches within long-term monitoring experiments that can be regularly revisited in a changing world and used to address questions on evolutionary scales.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Aluminum, powder, ≥91% (complexometric)
Sigma-Aldrich
Aluminum, granular, <1 mm, 99.7% trace metals basis
Sigma-Aldrich
Aluminum, foil, thickness 0.25 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, ReagentPlus®, beads, 5-15 mm, 99.9% trace metals basis
Sigma-Aldrich
Aluminum, pellets, 3-12 mm, 99.99% trace metals basis
Sigma-Aldrich
Aluminum, powder, <5 μm particle size, 99.5% trace metals basis
Sigma-Aldrich
Aluminum, foil, thickness 0.45-0.55 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, foil, thickness 0.13 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Aluminum, powder, <75 μm, ≥99.95% trace metals basis
Sigma-Aldrich
Aluminum, wire, diam. 0.58 mm, ≥99.99% trace metals basis
Sigma-Aldrich
Aluminum, foil, thickness 8 μm, 99% trace metals basis
Aluminum, rod, 1000mm, diameter 12.7mm, 99%
Sigma-Aldrich
Aluminum, foil, thickness 1.0 mm, 99.999% trace metals basis
Sigma-Aldrich
Aluminum, evaporation slug, diam. × L 6.3 mm × 6.3 mm, 99.999% trace metals basis
Aluminum, sphere, 100pcs, diameter 1.0mm, aluminum alloy 2017 precision sphere, grade 200, 95.2%
Sigma-Aldrich
Aluminum, pellets, 3-8 mesh, ≥99.999% trace metals basis
Aluminum, foam, 150x150mm, thickness 30mm, bulk density 0.2g/cm3, porosity 0.93, aluminum 6101 grade, 98.5%
Aluminum, rod, 200mm, diameter 12.7mm, 99%
Aluminum, mesh, 150x150mm, nominal aperture 0.38mm, wire diameter 0.25mm, 40x40 wires/inch, open area 37%, plain weave mesh
Aluminum, tube, 200mm, outside diameter 3.0mm, inside diameter 1.62mm, wall thickness 0.69mm, hard, 99.5%
Aluminum, foam, 150x150mm, thickness 3.2mm, bulk density 0.2g/cm3, porosity 0.93, 16 pores/cm, aluminum 6101 grade, 98.5%
Aluminum, rod, 100mm, diameter 12.7mm, 99%
Aluminum, rod, 1000mm, diameter 5.0mm, as drawn, 99.999%
Aluminum, honeycomb, 300x300mm, thickness 10mm, cell size 3.2mm, cell wall 0.025mm, core density 0g/cm3, phenolic adhesive (resin), 99.5%
Aluminum, rod, 500mm, diameter 6.0mm, as drawn, 99.999%
Aluminum, mesh, 600x600mm, nominal aperture 0.38mm, wire diameter 0.25mm, 40x40 wires/inch, open area 37%, plain weave mesh
Aluminum, sphere, 100pcs, diameter 3.0mm, aluminum alloy 2017 precision sphere, grade 200, 95.2%
Aluminum, mesh, 300x300mm, nominal aperture 0.38mm, wire diameter 0.25mm, 40x40 wires/inch, open area 37%, plain weave mesh
Aluminum, wire reel, 10m, diameter 0.25mm, as drawn, 99.95+%
Aluminum, honeycomb, 600x600mm, thickness 26.5mm, cell size 6.3mm, cell wall 0.064mm, core density 0.083g/cm3, phenolic adhesive (resin), facing skin carbon fiber / epoxy, 99.9%