Saltar al contenido
Merck

Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging.

Hypertension (Dallas, Tex. : 1979) (2014-12-03)
Nancy L Sehgel, Zhe Sun, Zhongkui Hong, William C Hunter, Michael A Hill, Dorothy E Vatner, Stephen F Vatner, Gerald A Meininger
RESUMEN

Hypertension and aging are both recognized to increase aortic stiffness, but their interactions are not completely understood. Most previous studies have attributed increased aortic stiffness to changes in extracellular matrix proteins that alter the mechanical properties of the vascular wall. Alternatively, we hypothesized that a significant component of increased vascular stiffness in hypertension is due to changes in the mechanical and adhesive properties of vascular smooth muscle cells, and that aging would augment the contribution from vascular smooth muscle cells when compared with the extracellular matrix. Accordingly, we studied aortic stiffness in young (16-week-old) and old (64-week-old) spontaneously hypertensive rats and Wistar-Kyoto wild-type controls. Systolic and pulse pressures were significantly increased in young spontaneously hypertensive rats when compared with young Wistar-Kyoto rats, and these continued to rise in old spontaneously hypertensive rats when compared with age-matched controls. Excised aortic ring segments exhibited significantly greater elastic moduli in both young and old spontaneously hypertensive rats versus Wistar-Kyoto rats. were isolated from the thoracic aorta, and stiffness and adhesion to fibronectin were measured by atomic force microscopy. Hypertension increased both vascular smooth muscle cell stiffness and vascular smooth muscle cell adhesion, and these increases were both augmented with aging. By contrast, hypertension did not affect histological measures of aortic collagen and elastin, which were predominantly changed by aging. These findings support the concept that stiffness and adhesive properties of vascular smooth muscle cells are novel mechanisms contributing to the increased aortic stiffness occurring with hypertension superimposed on aging.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Colágeno from human placenta, Bornstein and Traub Type IV, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Colágeno, tipo I solution from rat tail, BioReagent, suitable for cell culture, sterile-filtered
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, solid, BioReagent, suitable for cell culture
Sigma-Aldrich
Colágeno from rat tail, Bornstein and Traub Type I, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Colágeno from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from bovine achilles tendon, powder, suitable for substrate for collagenase
Sigma-Aldrich
Collagen Type IV from human cell culture, Bornstein and Traub Type IV, 0.3 mg/mL, sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from calf skin, Bornstein and Traub Type I, (0.1% solution in 0.1 M acetic acid), aseptically processed, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from chicken sternal cartilage, Type II (Miller), powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Colágeno from human placenta, Bornstein and Traub Type I (Sigma Type VIII), powder
Sigma-Aldrich
Elastin from bovine neck ligament, powder
Sigma-Aldrich
Collagen from Engelbreth-Holm-Swarm murine sarcoma basement membrane, Type IV (Miller), lyophilized powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Collagen from bovine tracheal cartilage, Bornstein and Traub Type II, powder
Sigma-Aldrich
Elastin, soluble from bovine neck ligament, salt-free, lyophilized powder
Sigma-Aldrich
Collagen human, Bornstein and Traub Type I, acid soluble, powder, ~95% (SDS-PAGE)
Sigma-Aldrich
Collagen from bovine nasal septum, Bornstein and Traub Type II, powder
Sigma-Aldrich
Colágeno from human placenta, Bornstein and Traub Type III (Sigma Type X), powder
Sigma-Aldrich
Colágeno from human placenta, Bornstein and Traub Type IV, solution, suitable for cell culture, High Performance
Sigma-Aldrich
Colágeno from human placenta, Bornstein and Traub Type V (Sigma Type IX), powder
Sigma-Aldrich
Colágeno from human placenta, Bornstein and Traub Type IV, powder
Sigma-Aldrich
Collagen from rabbit skin, Bornstein and Traub Type I, powder