- Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA.
Determination of synthesis route of 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P) based on impurity profiles of MDMA.
In our study 1-(3,4-methylenedioxyphenyl)-2-propanone (MDP-2-P or PMK) was prepared by two different routes, i.e. by oxidizing isosafrole in an acid medium and by 1-(3,4-methylenedioxyphenyl)-2-nitropropene reduction. The final product-MDP-2-P was subjected to GC/MS analysis. The intermediates and reaction by-products were identified and the 'route specific' impurities were established. The following impurities are the markers of the greatest importance: 1-(3,4-methylenedioxyphenyl)-1-propanone (compound 10, Table 2), 1-methoxy-1-(3,4-methylenedioxyphenyl)-2-propanone (compound 11, Table 2) and 2,2,4-trimethyl-5-(3,4-methylenedioxyphenyl)-[1,3]dioxolane (compound 13, Table 2) (the 'oxidising isosafrole route') and N-cyclohexylacetamide (compound 3, Table 1), 3-methyl-6,7-methylenedioxyisoquinoline-1,4-dione (compound 15, Table 1) (the 'MDP-2-nitropropene reduction route'). Subsequently, MDMA was prepared by reductive amination of MDP-2-P using NaBH4 as reducing agent (so-called 'cool method'). Impurities were extracted with n-heptane under alkaline conditions. The impurity profiles were obtained by means of GC/MS, some reaction by-products were identified by means of the EI mass spectra including low energy EI mass spectra and 'route specific' impurities were established. 4-Methyl-5-(3,4-methylenedioxyphenyl)-[1,3]dioxolan-2-one (compound 22, Table 2), N-methyl-2-methoxy-1-methyl-2-(3,4-methylenedioxyphenyl)-ethaneamine (compound 18, Table 2), 3-methyl-6,7-methylenedioxyisoquinoline-1,4-dione (compound 15, Table 1) and N-cyclohexyloacetamide (compound 3, Table 1) were found to be the synthesis markers of greatest importance.