Saltar al contenido
Merck

Use of transferred nuclear Overhauser effect measurements to compare binding of coenzyme analogues to dihydrofolate reductase.

Biochemistry (1983-02-01)
J Feeney, B Birdsall, G C Roberts, A S Burgen
RESUMEN

Transferred nuclear Overhauser effect measurements have been made on complexes of NADP+ and thioNADP+ with Lactobacillus casei dihydrofolate reductase to provide information about the glycosidic bond conformations in these complexes. Both NADP+ and thioNADP+ are shown to have very similar anti conformations about their adenine glycosidic bonds when bound to the enzyme. However, their nicotinamide glycosidic bond conformations are very different: while NADP+ binds in an exclusively anti conformation, thioNADP+ binds with a distribution of syn/anti conformations very similar to that observed in nicotinamide mononucleotides in free solution (approximately 50:50). Thus for thioNADP+, binding to the enzyme does not significantly perturb the potential function for rotation about the nicotinamide glycosidic bond. Earlier NMR studies [Hyde, E. I., Birdsall, B., Roberts, G. C. K., Feeney, J., & Burgen, A. S. V. (1980) Biochemistry 19, 3738] had indicated that large downfield 1H shifts of the nicotinamide ring protons (0.61-1.36 ppm) are detected on binding NADP+ while only very small shifts (less than 0.1 ppm) are observed in complexes with thioNADP+. The chemical shift and conformational findings are best explained if the thionicotinamide ring extends into solution making essentially no contacts with the enzyme.