Saltar al contenido
Merck

Molecular and system parameters governing mass and charge transport in polar liquids and electrolytes.

The journal of physical chemistry. B (2012-07-31)
Matt Petrowsky, Allison Fleshman, Mohd Ismail, Daniel T Glatzhofer, Dharshani N Bopege, Roger Frech
RESUMEN

Onsager's model of the dielectric constant is used to provide a molecular-level picture of how the dielectric constant affects mass and charge transport in organic liquids and organic liquid electrolytes. Specifically, the molecular and system parameters governing transport are the molecular dipole moment μ and the solvent dipole density N. The compensated Arrhenius formalism (CAF) writes the temperature-dependent ionic conductivity or diffusion coefficient as an Arrhenius-like expression that also includes a static dielectric constant (ε(s)) dependence in the exponential prefactor. The temperature dependence of ε(s) and therefore the temperature dependence of the exponential prefactor is due to the quantity N/T, where T is the temperature. Using the procedure described in the CAF, values of the activation energy can be obtained by scaling out the N/T dependence instead of the ε(s) dependence. It has been previously shown that a plot of the prefactors versus ε(s) results in a master curve, and here it is shown that a master curve also results by plotting the prefactors against N/T. Therefore, the CAF can be applied by using temperature-dependent density data instead of temperature-dependent dielectric constant data. This application is demonstrated for diffusion data of n-nitriles, n-thiols, n-acetates, and 2-ketones, as well as conductivity data for dilute tetrabutylammonium triflate-nitrile electrolytes.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Tetrabutylammonium phosphate monobasic solution, 1.0 M in H2O
Sigma-Aldrich
Fluoruro de tetrabultilamonio solution, 1.0 M in THF
Sigma-Aldrich
Hidróxido de tetrabutilamonio solution, 40 wt. % in H2O
Sigma-Aldrich
Cloruro de tetrabutilamonio, ≥97.0% (NT)
Sigma-Aldrich
Hidróxido de tetrabutilamonio solution, 1.0 M in methanol
Sigma-Aldrich
Tetrabutylammonium iodide, reagent grade, 98%
Supelco
Hidróxido de tetrabutilamonio solution, ~40% in water, suitable for ion chromatography
Sigma-Aldrich
Tetrabutylammonium hydrogensulfate, 97%
Sigma-Aldrich
Tetrabutylammonium bromide, ACS reagent, ≥98.0%
Sigma-Aldrich
Tetrabutylammonium perchlorate, ≥95.0% (T)
Sigma-Aldrich
Tetrabutylammonium cyanide, 95%
Sigma-Aldrich
Tetrabutylammonium bisulfate, puriss., ≥99.0% (T)
Sigma-Aldrich
Tetrabutylammonium phosphate monobasic, puriss., 99% (T)
Sigma-Aldrich
Tetrabutylammonium bromide, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Tetrabutylammonium nitrate, 97%
Sigma-Aldrich
Tetrabutylammonium iodide, ≥99.0% (AT)
Sigma-Aldrich
Tetrabutylammonium azide
Supelco
Tetrabutylammonium bisulfate, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Fluoruro de tetrabultilamonio solution, 75 wt. % in H2O
Supelco
Tetrabutylammonium perchlorate, for electrochemical analysis, ≥99.0%
Sigma-Aldrich
Hidróxido de tetrabutilamonio solution, technical, ~40% in H2O (~1.5 M)
Supelco
Tetrabutylammonium bromide, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Hidróxido de tetrabutilamonio solution, 53.5-56.5% in H2O
Sigma-Aldrich
Tetrabutylammonium bromide solution, 50 wt. % in H2O
Sigma-Aldrich
Tetrabutylammonium bisulfate solution, ~55% in H2O
Sigma-Aldrich
Tetrabutylammonium cyanide, technical, ≥80%
Supelco
Cloruro de tetrabutilamonio, suitable for ion pair chromatography, LiChropur, ≥99.0%
Supelco
Tetrabutylammonium hydrogen sulfate solution, suitable for ion pair chromatography, LiChropur, concentrate, ampule
Supelco
Tetrabutylammonium iodide, suitable for ion pair chromatography, LiChropur, ≥99.0%