Saltar al contenido
Merck

Pendrin function and regulation in Xenopus oocytes.

Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology (2011-11-26)
Fabian R Reimold, John F Heneghan, Andrew K Stewart, Israel Zelikovic, David H Vandorpe, Boris E Shmukler, Seth L Alper
RESUMEN

SLC26A4/PDS mutations cause Pendred Syndrome and non-syndromic deafness. but some aspects of function and regulation of the SLC26A4 polypeptide gene product, pendrin, remain controversial or incompletely understood. We have therefore extended the functional analysis of wildtype and mutant pendrin in Xenopus oocytes, with studies of isotopic flux, electrophysiology, and protein localization. Pendrin mediated electroneutral, pH-insensitive, DIDS-insensitive anion exchange, with extracellular K((1/2)) (in mM) of 1.9 (Cl(-)), 1.8 (I(-)), and 0.9 (Br(-)). The unusual phenotype of Pendred Syndrome mutation E303Q (loss-of-function with normal surface expression) prompted systematic mutagenesis at position 303. Only mutant E303K exhibited loss-of-function unrescued by forced overexpression. Mutant E303C was insensitive to charge modification by methanethiosulfonates. The corresponding mutants SLC26A2 E336Q, SLC26A3 E293Q, and SLC26A6 E298Q exhibited similar loss-of-function phenotypes, with wildtype surface expression also documented for SLC26A2 E336Q. The strong inhibition of wildtype SLC26A2, SLC26A3, and SLC26A6 by phorbol ester contrasts with its modest inhibition of pendrin. Phorbol ester inhibition of SLC26A2, SLC26A3, and SLC26A6 was blocked by coexpressed kinase-dead PKCδ but was without effect on pendrin. Mutation of SLC26A2 serine residues conserved in PKCδ -sensitive SLC26 proteins but absent from pendrin failed to reduce PKCδ sensitivity of SLC26A2 (190).

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Sodium methanethiosulfonate, 95%