Saltar al contenido
Merck
  • Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.

Calculation of electrostatic interaction energies in molecular dimers from atomic multipole moments obtained by different methods of electron density partitioning.

Journal of computational chemistry (2004-03-18)
Anatoliy Volkov, Philip Coppens
RESUMEN

Accurate and fast evaluation of electrostatic interactions in molecular systems is still one of the most challenging tasks in the rapidly advancing field of macromolecular chemistry, including molecular recognition, protein modeling and drug design. One of the most convenient and accurate approaches is based on a Buckingham-type approximation that uses the multipole moment expansion of molecular/atomic charge distributions. In the mid-1980s it was shown that the pseudoatom model commonly used in experimental X-ray charge density studies can be easily combined with the Buckingham-type approach for calculation of electrostatic interactions, plus atom-atom potentials for evaluation of the total interaction energies in molecular systems. While many such studies have been reported, little attention has been paid to the accuracy of evaluation of the purely electrostatic interactions as errors may be absorbed in the semiempirical atom-atom potentials that have to be used to account for exchange repulsion and dispersion forces. This study is aimed at the evaluation of the accuracy of the calculation of electrostatic interaction energies with the Buckingham approach. To eliminate experimental uncertainties, the atomic moments are based on theoretical single-molecule electron densities calculated at various levels of theory. The electrostatic interaction energies for a total of 11 dimers of alpha-glycine, N-acetylglycine and L-(+)-lactic acid structures calculated according to Buckingham with pseudoatom, stockholder and atoms-in-molecules moments are compared with those evaluated with the Morokuma-Ziegler energy decomposition scheme. For alpha-glycine a comparison with direct "pixel-by-pixel" integration method, recently developed Gavezzotti, is also made. It is found that the theoretical pseudoatom moments combined with the Buckingham model do predict the correct relative electrostatic interactions energies, although the absolute interaction energies are underestimated in some cases. The good agreement between electrostatic interaction energies computed with Morokuma-Ziegler partitioning, Gavezzotti's method, and the Buckingham approach with atoms-in-molecules moments demonstrates that reliable and accurate evaluation of electrostatic interactions in molecular systems of considerable complexity is now feasible.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
N-Acetylglycine, ReagentPlus®, 99%