Saltar al contenido
Merck
  • Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors.

Withdrawal from chronic intermittent ethanol treatment changes subunit composition, reduces synaptic function, and decreases behavioral responses to positive allosteric modulators of GABAA receptors.

Molecular pharmacology (2002-12-19)
Elisabetta Cagetti, Jing Liang, Igor Spigelman, Richard W Olsen
RESUMEN

One of the pharmacological targets of ethanol is the GABAA receptor (GABAR), whose function and expression are altered after chronic administration of ethanol. The details of the changes differ between experimental models. In the chronic intermittent ethanol (CIE) model for alcohol dependence, rats are exposed to intermittent episodes of intoxicating ethanol and withdrawal, leading to a kindling-like state of behavioral excitability. This is accompanied by presumably causal changes in GABAR expression and physiology. The present study investigates further the effect of CIE on GABAR function and expression. CIE is validated as a model for human alcohol withdrawal syndrome (AWS) by demonstrating increased level of anxiety; diazepam improved performance in the test. In addition, CIE rats showed remarkably reduced hypnotic response to a benzodiazepine and a steroid anesthetic, reduced sensitivity to a barbiturate, but not propofol. Immunoblotting revealed decrease in alpha1 and delta expression and increase in gamma2 and alpha4 subunits in hippocampus of CIE rats, confirmed by an increase in diazepam-insensitive binding for ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo(1,5-alpha)(1,4)benzodiazepine-3-carboxylate (Ro15-4513). Elevated mRNA levels were shown for the gamma2S and gamma1 subunits. Recordings in hippocampal slices from CIE rats revealed that the decay time of GABAR-mediated miniature inhibitory postsynaptic currents (mIPSCs) in CA1 pyramidal cells was decreased, and potentiation of mIPCSs by positive modulators of GABAR was also reduced compared with control rats. However, mIPSC potentiation by the alpha4-preferring benzodiazepine ligands bretazenil and Ro15-4513 was maintained, and increased, respectively. These data suggest that specific alterations in GABAR occur after CIE and may underlie the development of hyperexcitability and ethanol dependence.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Bretazenil, ≥96% (HPLC), solid