- Concomitant blockade of P2X-receptors and ecto-nucleotidases by P2-receptor antagonists: functional consequences in rat vas deferens.
Concomitant blockade of P2X-receptors and ecto-nucleotidases by P2-receptor antagonists: functional consequences in rat vas deferens.
In order to assess the consequences of a concomitant blockade of P2X-receptors and ecto-nucleotidases, effects of 13 P2-receptor antagonists were investigated on contractions of the rat vas deferens elicited by alpha,beta-methylene ATP (alpha,beta-MeATP) and ATP and on the removal of ATP from the incubation medium by vas deferens tissue. Increasing concentrations of all antagonists reduced and finally abolished contractions elicited by alpha,beta-MeATP (3 microM), with IC50-values ranging from 1.1 to 100 microM. Pyridoxalphosphate-6-azophenyl-2',4'-disulphonate (PPADS), 6-azophenyl-4-amino-5-hydroxy-naphthalene-1,3-disulphonate (NH02), 4,4'-diisothiocyanatostilbene-2,2'-disulphonate (DIDS) and uniblue A also progressively reduced and finally abolished contractions elicited by ATP (1 mM). 8,8'-[Carbonylbis(imino-3, 1-phenylenecarbonyl-imino)]-bis-(1,3,5-naphthalenetrisulphonate ) (NF023), suramin, pyridoxalphosphate-6-azophenyl-2',5'-disulphonate (iso-PPADS), trypan blue and reactive blue 19, in contrast, caused only partial blockade, by 34-43% maximally; reactive blue 2 and reactive red 2 had no effect; and 6,6'-(1,1'-biphenyl-4,4'-diylbisazo)-bis-4-amino-5-hydroxy-naphtha lene-1,3-disulphonate (NH01) and Evans blue even enhanced the response to ATP. For antagonists causing full or partial inhibition, the IC50-values against ATP were close to those against alpha,beta-MeATP. All antagonists attenuated the removal of ATP, with IC25%-values ranging from 0.8 microM to >320 microM. The results confirm the frequent combination, in one antagonist molecule, of P2-receptor blockade and blockade of ecto-nucleotidases. This dual action underlies the effect of such compounds on contractions of the vas deferens elicited by ATP which, for certain substances (e.g., suramin, reactive blue 2), can be explained by a simple model in which the antagonist simultaneously blocks the degradation of ATP and a single contraction-mediating receptor (P2X1). Several observations, however, do not conform with this model, and the existence of multiple contraction-mediating receptors for ATP or multiple, pharmacologically distinct ecto-nucleotidases has to be considered.