Saltar al contenido
Merck

Wild-type C-Raf gene dosage and dimerization drive prostate cancer metastasis.

iScience (2023-12-13)
Lisa Ta, Brandon L Tsai, Weixian Deng, Jihui Sha, Grigor Varuzhanyan, Wendy Tran, James A Wohlschlegel, Janai R Carr-Ascher, Owen N Witte
RESUMEN

Mutated Ras and Raf kinases are well-known to promote cancer metastasis via flux through the Ras/Raf/MEK/ERK (mitogen-activated protein kinase [MAPK]) pathway. A role for non-mutated Raf in metastasis is also emerging, but the key mechanisms remain unclear. Elevated expression of any of the three wild-type Raf family members (C, A, or B) can drive metastasis. We utilized an in vivo model to show that wild-type C-Raf overexpression can promote metastasis of immortalized prostate cells in a gene dosage-dependent manner. Analysis of the transcriptomic and phosphoproteomic landscape indicated that C-Raf-driven metastasis is accompanied by upregulated MAPK signaling. Use of C-Raf mutants demonstrated that the dimerization domain, but not its kinase activity, is essential for metastasis. Endogenous Raf monomer knockouts revealed that C-Raf's ability to form dimers with endogenous Raf molecules is important for promoting metastasis. These data identify wild-type C-Raf heterodimer signaling as a potential target for treating metastatic disease.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Anti-RAF1 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution