Saltar al contenido
Merck

Superimposition of metabolic syndrome magnifies post-stenotic kidney injury in dyslipidemic pigs.

American journal of translational research (2021-09-21)
Turun Song, Yu Zhao, Xiangyang Zhu, Alfonso Eirin, James D Krier, Hui Tang, Kyra L Jordan, Amir Lerman, Lilach O Lerman
RESUMEN

Dyslipidemia aggravates kidney injury distal to atherosclerotic renal artery stenosis (ARAS). Besides dyslipidemia, metabolic syndrome (MetS) also involves development of obesity and insulin-resistance (IR). We hypothesized that concurrent obesity and IR magnify swine stenotic-kidney damage beyond dyslipidemia. Pigs with unilateral RAS were studied after 16 weeks of atherogenic diets without (ARAS) or with (MetS + RAS) development of obesity/IR (n=6 each). Additional pigs on normal diet served as normal or non-dyslipidemic RAS controls (n=6 each). Stenotic-kidney renal blood flow (RBF), glomerular filtration rate (GFR), and microvascular architecture were studied using CT, and oxygenation was studied using blood oxygen level-dependent magnetic-resonance-imaging. We further compared kidney adiposity, oxidative stress, inflammation, apoptosis, fibrosis, and systemic levels of oxidative and inflammatory cytokines. ARAS and MetS + RAS developed hypertension and dyslipidemia, and MetS + RAS also developed obesity and IR. RBF and GFR were similarly decreased in all post-stenotic pig kidneys compared to normal pig kidneys, yet MetS + RAS aggravated and expanded medullary hypoxia and microvascular loss. RAS and ARAS increased systemic levels of tumor necrosis factor (TNF)-α, which were further elevated in MetS + RAS. Renal oxidative stress and TNF-α expression increased in ARAS and further in MetS + RAS, which also upregulated expression of anti-angiogenic angiostatin, and magnified apoptosis, tubular injury, and fibrosis. Beyond dyslipidemia, obesity and insulin-resistance aggravate damage in the post-stenotic kidney in MetS, despite relative hyperfiltration-related preservation of renal function. These observations underscore the need to control systemic metabolic disturbances in order to curb renal damage in subjects with ischemic kidney disease.