Saltar al contenido
Merck

TDP-43 dysfunction results in R-loop accumulation and DNA replication defects.

Journal of cell science (2020-09-30)
Matthew Wood, Annabel Quinet, Yea-Lih Lin, Albert A Davis, Philippe Pasero, Yuna M Ayala, Alessandro Vindigni
RESUMEN

TAR DNA-binding protein 43 (TDP-43; also known as TARDBP) is an RNA-binding protein whose aggregation is a hallmark of the neurodegenerative disorders amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 loss increases DNA damage and compromises cell viability, but the actual function of TDP-43 in preventing genome instability remains unclear. Here, we show that loss of TDP-43 increases R-loop formation in a transcription-dependent manner and results in DNA replication stress. TDP-43 nucleic-acid-binding and self-assembly activities are important in inhibiting R-loop accumulation and preserving normal DNA replication. We also found that TDP-43 cytoplasmic aggregation impairs TDP-43 function in R-loop regulation. Furthermore, increased R-loop accumulation and DNA damage is observed in neurons upon loss of TDP-43. Together, our findings indicate that TDP-43 function and normal protein homeostasis are crucial in maintaining genomic stability through a co-transcriptional process that prevents aberrant R-loop accumulation. We propose that the increased R-loop formation and genomic instability associated with TDP-43 loss are linked to the pathogenesis of TDP-43 proteinopathies.This article has an associated First Person interview with the first author of the paper.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
TWEEN® 20, viscous liquid
Sigma-Aldrich
Cytochalasin B from Drechslera dematioidea, ≥98% (HPLC), powder
Sigma-Aldrich
Nocodazole, ≥99% (TLC), powder
Sigma-Aldrich
MISSION® esiRNA, targeting human TARDBP