- Towards exhaustive electromembrane extraction under stagnant conditions.
Towards exhaustive electromembrane extraction under stagnant conditions.
Electromembrane extraction (EME) in small, stagnant and chip-like devices has the potential for future in-field operation. Literature briefly discuss such systems, but performance suffered from evaporative losses of sample and acceptor. To address this, the current paper reports electromembrane extraction (EME) of five basic drugs (model analytes) from aqueous buffer solutions and whole blood samples under stagnant conditions in a completely closed system. A laboratory-made polyoxymethylene (POM) well plate served as compartment for the sample solution, while a commercially available well filter plate was used to immobilize 2-nitrophenyl octyl ether (NPOE) as supported liquid membrane (SLM) and as closed compartment for the acceptor solution. Major design parameters (sample compartment and electrode geometry) and operational parameters (sample volume, voltage and extraction time) were investigated and optimized. Electrode geometry was not very critical, but extraction efficiency increased with decreasing sample volume. Extraction from 50 μL aqueous buffer solution for 60 min and with a voltage of 75 V was considered exhaustive (sample was depleted), with recoveries ranging between 75% and 87% for loperamide, haloperidol, methadone, nortriptyline, and pethidine (RSD: 2-12%). Extraction from whole blood samples under optimized conditions yielded slightly lower recoveries, ranging between 57 and 96% (RSD: 3-12%). Stagnant EME was evaluated in combination with liquid chromatography-mass spectrometry (LC-MS) as a highly specific instrumental method, and provided evaluation data on methadone from blood samples in accordance with regulatory requirements (LOD: 0.4 ng/mL, LOQ: 1.4 ng/mL, RSD: 6-20%). This work has improved upon the design of stagnant EME, moving it further towards a viable in-field operation device.