Saltar al contenido
Merck
  • JNK1/2-dependent phosphorylation of angulin-1/LSR is required for the exclusive localization of angulin-1/LSR and tricellulin at tricellular contacts in EpH4 epithelial sheet.

JNK1/2-dependent phosphorylation of angulin-1/LSR is required for the exclusive localization of angulin-1/LSR and tricellulin at tricellular contacts in EpH4 epithelial sheet.

Genes to cells : devoted to molecular & cellular mechanisms (2014-06-04)
Daiki Nakatsu, Fumi Kano, Yuki Taguchi, Taichi Sugawara, Takashi Nishizono, Kiyotaka Nishikawa, Yukako Oda, Mikio Furuse, Masayuki Murata
RESUMEN

Tricellular tight junctions (tTJs) are specialized structural variants of tight junctions within tricellular contacts of an epithelial sheet and comprise several transmembrane proteins including lipolysis-stimulated lipoprotein receptor (angulin-1/LSR) and tricellulin. To elucidate the mechanism of its formation, we carried out stepwise screening of kinase inhibitors followed by RNAi screening to identify kinases that regulate intracellular localization of angulin-1/LSR to the tTJs using a fluorescence image-based screen. We found that the activity of JNK1 and JNK2, but not JNK3, was required for the exclusive localization of angulin-1/LSR at the tTJs. Based on a bioinformatics approach, we estimated the potential phosphorylation site of angulin-1/LSR by JNK1 to be serine 288 and experimentally confirmed that JNK1 directly phosphorylates angulin-1/LSR at this site. We found that JNK2 was also involved in the phosphorylation of angulin-1/LSR. Furthermore, GFP-tagged angulin-1/LSR(S288A), in which serine 288 was substituted by alanine, was observed to be dispersed to bicellular junctions, indicating that phosphorylation of Ser288 is crucial for the exclusive localization of angulin-1/LSR and tricellulin at tTJs. Our fluorescence image-based screening for kinases inhibitor or siRNAs combined with the phosphorylation site prediction could become a versatile and useful tool to elucidate the mechanisms underlying the maintenance of tTJs regulated by kinase networks.